Monday, 07 March 2011 18:51

Analysis of Activities, Tasks and Work Systems

Rate this item
(4 votes)

It is difficult to speak of work analysis without putting it in the perspective of recent changes in the industrial world, because the nature of activities and the conditions in which they are carried out have undergone considerable evolution in recent years. The factors giving rise to these changes have been numerous, but there are two whose impact has proved crucial. On the one hand, technological progress with its ever-quickening pace and the upheavals brought about by information technologies have revolutionized jobs (De Keyser 1986). On the other hand, the uncertainty of the economic market has required more flexibility in personnel management and work organization. If the workers have gained a wider view of the production process that is less routine-oriented and undoubtedly more systematic, they have at the same time lost exclusive links with an environment, a team, a production tool. It is difficult to view these changes with serenity, but we have to face the fact that a new industrial landscape has been created, sometimes more enriching for those workers who can find their place in it, but also filled with pitfalls and worries for those who are marginalized or excluded. However, one idea is being taken up in firms and has been confirmed by pilot experiments in many countries: it should be possible to guide changes and soften their adverse effects with the use of relevant analyses and by using all resources for negotiation between the different work actors. It is within this context that we must place work analyses today—as tools allowing us to describe tasks and activities better in order to guide interventions of different kinds, such as training, the setting up of new organizational modes or the design of tools and work systems. We speak of analyses, and not just one analysis, since there exist a large number of them, depending on the theoretical and cultural contexts in which they are developed, the particular goals they pursue, the evidence they collect, or the analyser’s concern for either specificity or generality. In this article, we will limit ourselves to presenting a few characteristics of work analyses and emphasizing the importance of collective work. Our conclusions will highlight other paths that the limits of this text prevent us from pursuing in greater depth.

Some Characteristics of Work Analyses

The context

If the primary goal of any work analysis is to describe what the operator does, or should do, placing it more precisely into its context has often seemed indispensable to researchers. They mention, according to their own views, but in a broadly similar manner, the concepts of context, situation, environment, work domain, work world or work environment. The problem lies less in the nuances between these terms than in the selection of variables that need to be described in order to give them a useful meaning. Indeed, the world is vast and the industry is complex, and the characteristics that could be referred to are innumerable. Two tendencies can be noted among authors in the field. The first one sees the description of the context as a means of capturing the reader’s interest and providing him or her with an adequate semantic framework. The second has a different theoretical perspective: it attempts to embrace both context and activity, describing only those elements of the context that are capable of influencing the behavior of operators.

The semantic framework

Context has evocative power. It is enough, for an informed reader, to read about an operator in a control room engaged in a continuous process to call up a picture of work through commands and surveillance at a distance, where the tasks of detection, diagnosis, and regulation predominate. What variables need to be described in order to create a sufficiently meaningful context? It all depends on the reader. Nonetheless, there is a consensus in the literature on a few key variables. The nature of the economic sector, the type of production or service, the size and the geographical location of the site are useful.

The production processes, the tools or machines and their level of automation allow certain constraints and certain necessary qualifications to be guessed at. The structure of the personnel, together with age and level of qualification and experience are crucial data whenever the analysis concerns aspects of training or of organizational flexibility. The organization of work established depends more on the firm’s philosophy than on technology. Its description includes, notably, work schedules, the degree of centralization of decisions and the types of control exercised over the workers. Other elements may be added in different cases. They are linked to the firm’s history and culture, its economic situation, work conditions, and any restructuring, mergers, and investments. There exist at least as many systems of classification as there are authors, and there are numerous descriptive lists in circulation. In France, a special effort has been made to generalize simple descriptive methods, notably allowing for the ranking of certain factors according to whether or not they are satisfactory for the operator (RNUR 1976; Guelaud et al. 1977).

The description of relevant factors regarding the activity

The taxonomy of complex systems described by Rasmussen, Pejtersen, and Schmidts (1990) represents one of the most ambitious attempts to cover at the same time the context and its influence on the operator. Its main idea is to integrate, in a systematic fashion, the different elements of which it is composed and to bring out the degrees of freedom and the constraints within which individual strategies can be developed. Its exhaustive aim makes it difficult to manipulate, but the use of multiple modes of representation, including graphs, to illustrate the constraints has a heuristic value that is bound to be attractive to many readers. Other approaches are more targeted. What the authors seek is the selection of factors that can influence a precise activity. Hence, with an interest in the control of processes in a changing environment, Brehmer (1990) proposes a series of temporal characteristics of the context which affect the control and anticipation of the operator (see figure 1). This author’s typology has been developed from “micro-worlds”, computerized simulations of dynamic situations, but the author himself, along with many others since, used it for the continuous-process industry (Van Daele 1992). For certain activities, the influence of the environment is well known, and the selection of factors is not too difficult. Thus, if we are interested in heart rate in the work environment, we often limit ourselves to describing the air temperatures, the physical constraints of the task or the age and training of the subject—even though we know that by doing so we perhaps leave out relevant elements. For others, the choice is more difficult. Studies on human error, for example, show that the factors capable of producing them are numerous (Reason 1989). Sometimes, when theoretical knowledge is insufficient, only statistical processing, combining context and activity analysis, allows us to bring out the relevant contextual factors (Fadier 1990).

Figure 1. The criteria and sub-criteria of the taxonomy of micro-worlds proposed by Brehmer (1990)

ERG040T1

The Task or the Activity?

The task

The task is defined by its objectives, its constraints and the means it requires for achievement. A function within the firm is generally characterized by a set of tasks. The realized task differs from the prescribed task scheduled by the firm for a large number of reasons: the strategies of operators vary within and among individuals, the environment fluctuates and random events require responses that are often outside the prescribed framework. Finally, the task is not always scheduled with the correct knowledge of its conditions of execution, hence the need for adaptations in real-time. But even if the task is updated during the activity, sometimes to the point of being transformed, it still remains the central reference.

Questionnaires, inventories, and taxonomies of tasks are numerous, especially in the English-language literature—the reader will find excellent reviews in Fleishman and Quaintance (1984) and in Greuter and Algera (1989). Certain of these instruments are merely lists of elements—for example, the action verbs to illustrate tasks—that are checked off according to the function studied. Others have adopted a hierarchical principle, characterizing a task as interlocking elements, ordered from the global to the particular. These methods are standardized and can be applied to a large number of functions; they are simple to use, and the analytical stage is much shortened. But where it is a question of defining specific work, they are too static and too general to be useful.

Next, there are those instruments requiring more skill on the part of the researcher; since the elements of analysis are not predefined, it is up to the researcher to characterize them. The already outdated critical incident technique of Flanagan (1954), where the observer describes a function by reference to its difficulties and identifies the incidents which the individual will have to face, belongs to this group.

It is also the path adopted by cognitive task analysis (Roth and Woods 1988). This technique aims to bring to light the cognitive requirements of a job. One way to do this is to break the job down into goals, constraints and means. Figure 2 shows how the task of an anesthetist, characterized first by a very global goal of patient survival, can be broken down into a series of sub-goals, which can themselves be classified as actions and means to be employed. More than 100 hours of observation in the operating theatre and subsequent interviews with anesthetists were necessary to obtain this synoptic “photograph” of the requirements of the function. This technique, although quite laborious, is nevertheless useful in ergonomics in determining whether all the goals of a task are provided with the means of attaining them. It also allows for an understanding of the complexity of a task (its particular difficulties and conflicting goals, for example) and facilitates the interpretation of certain human errors. But it suffers, as do other methods, from the absence of a descriptive language (Grant and Mayes 1991). Moreover, it does not permit hypotheses to be formulated as to the nature of the cognitive processes brought into play to attain the goals in question.

Figure 2. Cognitive analysis of the task: general anesthesia

ERG040F1

Other approaches have analyzed the cognitive processes associated with given tasks by drawing up hypotheses as to the information processing necessary to accomplish them. A frequently employed cognitive model of this kind is Rasmussen’s (1986), which provides, according to the nature of the task and its familiarity for the subject, three possible levels of activity-based either on skill-based habits and reflexes, on acquired rule-based procedures or on knowledge-based procedures. But other models or theories that reached the height of their popularity during the 1970s remain in use. Hence, the theory of optimal control, which considers man as a controller of discrepancies between assigned and observed goals, is sometimes still applied to cognitive processes. And modeling by means of networks of interconnected tasks and flow charts continues to inspire the authors of cognitive task analysis; figure 3 provides a simplified description of the behavioral sequences in an energy-control task, constructing a hypothesis about certain mental operations. All these attempts reflect the concern of researchers to bring together in the same description not only elements of the context but also the task itself and the cognitive processes that underlie it—and to reflect the dynamic character of work as well.

Figure 3. A simplified description of the determinants of a behavior sequence in energy control tasks: a case of unacceptable consumption of energy

ERG040F2

Since the arrival of the scientific organization of work, the concept of the prescribed task has been adversely criticized because it has been viewed as involving the imposition on workers of tasks that are not only designed without consulting their needs but are often accompanied by specific performance time, a restriction not welcomed by many workers. Even if the imposition aspect has become rather more flexible today and even if the workers contribute more often to the design of tasks, an assigned time for tasks remains necessary for schedule planning and remains an essential component of work organization. The quantification of time should not always be perceived in a negative manner. It constitutes a valuable indicator of workload. A simple but common method of measuring the time pressure exerted on a worker consists of determining the quotient of the time necessary for the execution of a task divided by the available time. The closer this quotient is to unity, the greater the pressure (Wickens 1992). Moreover, quantification can be used in flexible but appropriate personnel management. Let us take the case of nurses where the technique of predictive analysis of tasks has been generalized, for example, in the Canadian regulation Planning of Required Nursing (PRN 80) (Kepenne 1984) or one of its European variants. Thanks to such task lists, accompanied by their meantime of execution, one can, each morning, taking into account the number of patients and their medical conditions, establish a care schedule and a distribution of personnel. Far from being a constraint, PRN 80 has, in a number of hospitals, demonstrated that a shortage of nursing personnel exists, since the technique allows a difference to be established (see figure 4) between the desired and the observed, that is, between the number of staff necessary and the number available, and even between the tasks planned and the tasks carried out. The times calculated are only averages, and the fluctuations in the situation do not always make them applicable, but this negative aspect is minimized by a flexible organization that accepts adjustments and allows the personnel to participate in effecting those adjustments.

Figure 4.  Discrepancies between the numbers of personnel present and required  on the basis of PRN80

ERG040F3

The activity, the evidence, and the performance

An activity is defined as the set of behaviors and resources used by the operator so that work occurs—that is to say, the transformation or production of goods or the rendering of a service. This activity can be understood through observation in different ways. Faverge (1972) has described four forms of analysis. The first is an analysis in terms of gestures and postures, where the observer locates, within the visible activity of the operator, classes of behavior that are recognizable and repeated during work. These activities are often coupled with a precise response: for example, the heart rate, which allows us to assess the physical load associated with each activity. The second form of analysis is in terms of information uptake. What is discovered, through direct observation—or with the aid of cameras or recorders of eye movements—is the set of signals picked up by the operator in the information field surrounding him or her. This analysis is particularly useful in cognitive ergonomics in trying to better understand the information processing carried out by the operator. The third type of analysis is in terms of regulation. The idea is to identify the adjustments of activity carried out by the operator in order to deal with either fluctuation in the environment or changes in his own condition. There we find the direct intervention of context within the analysis. One of the most frequently cited research projects in this area is that of Sperandio (1972). This author studied the activity of air traffic controllers and identified important strategy changes during an increase in air traffic. He interpreted them as an attempt to simplify the activity by aiming to maintain an acceptable load level, while at the same time continuing to meet the requirements of the task. The fourth is an analysis in terms of thought processes. This type of analysis has been widely used in the ergonomics of highly automated posts. Indeed, the design of computerized aids and notably intelligent aids for the operator requires a thorough understanding of the way in which the operator reasons in order to solve certain problems. The reasoning involved in scheduling, anticipation, and diagnosis has been the subject of analyses, an example of which can be found in figure 5. However, evidence of mental activity can only be inferred. Apart from certain observable aspects of behavior, such as eye movements and problem-solving time, most of these analyses resort to the verbal response. Particular emphasis has been placed, in recent years, on the knowledge necessary to accomplish certain activities, with researchers trying not to postulate them at the outset but to make them apparent through the analysis itself.

Figure 5. Analysis of mental activity. Strategies in the control of processes  with long response times: the need for computerized support in diagnosis

ERG040T2

Such efforts have brought to light the fact that almost identical performances can be obtained with very different levels of knowledge, as long as operators are aware of their limits and apply strategies adapted to their capabilities. Hence, in our study of the start-up of a thermoelectric plant (De Keyser and Housiaux 1989), the start-ups were carried out by both engineers and operators. The theoretical and procedural knowledge that these two groups possessed, which had been elicited by means of interviews and questionnaires, were very different. The operators in particular sometimes had an erroneous understanding of the variables in the functional links of the process. In spite of this, the performances of the two groups were very close. But the operators took into account more variables in order to verify the control of the start-up and undertook more frequent verifications. Such results were also obtained by Amalberti (1991), who mentioned the existence of metaknowledge allowing experts to manage their own resources.

What evidence of activity is appropriate to elicit? Its nature, as we have seen, depends closely on the form of analysis planned. Its form varies according to the degree of methodological care exercised by the observer. Provoked evidence is distinguished from spontaneous evidence and concomitant from subsequent evidence. Generally speaking, when the nature of the work allows, concomitant and spontaneous evidence are to be preferred. They are free of various drawbacks such as the unreliability of memory, observer interference, the effect of rationalizing reconstruction on the part of the subject, and so forth. To illustrate these distinctions, we will take the example of verbalizations. Spontaneous verbalizations are verbal exchanges, or monologues expressed spontaneously without being requested by the observer; provoked verbalizations are those made at the specific request of the observer, such as the request made to the subject to “think aloud”, which is well known in the cognitive literature. Both types can be done in real-time, during work, and are thus concomitant.

They can also be subsequent, as in interviews, or subjects’ verbalizations when they view videotapes of their work. As for the validity of the verbalizations, the reader should not ignore the doubt raised in this regard by the controversy between Nisbett and De Camp Wilson (1977) and White (1988) and the precautions suggested by numerous authors aware of their importance in the study of mental activity in view of the methodological difficulties encountered (Ericson and Simon 1984; Savoyant and Leplat 1983; Caverni 1988; Bainbridge 1986).

The organization of this evidence, its processing and its formalization require descriptive languages and sometimes analyses that go beyond field observation. Those mental activities which are inferred from the evidence, for example, remain hypothetical. Today they are often described using languages derived from artificial intelligence, making use of representations in terms of schemes, production rules, and connecting networks. Moreover, the use of computerized simulations—of micro-worlds—to pinpoint certain mental activities has become widespread, even though the validity of the results obtained from such computerized simulations, in view of the complexity of the industrial world, is subject to debate. Finally, we must mention the cognitive modelings of certain mental activities extracted from the field. Among the best known is the diagnosis of the operator of a nuclear power plant, carried out in ISPRA (Decortis and Cacciabue 1990), and the planning of the combat pilot perfected in Centre d’études et de recherches de médecine aérospatiale (CERMA) (Amalberti et al. 1989).

Measurement of the discrepancies between the performance of these models and that of real, living operators is a fruitful field in activity analysis. Performance is the outcome of the activity, the final response given by the subject to the requirements of the task. It is expressed at the level of production: productivity, quality, error, incident, accident—and even, at a more global level, absenteeism or turnover. But it must also be identified at the individual level: the subjective expression of satisfaction, stress, fatigue or workload, and many physiological responses are also performance indicators. Only the entire set of data permits interpretation of the activity—that is to say, judging whether or not it furthers the desired goals while remaining within human limits. There exists a set of norms which, up to a certain point, guide the observer. But these norms are not situated—they do not take into account the context, its fluctuations and the condition of the worker. This is why in design ergonomics, even when rules, norms, and models exist, designers are advised to test the product using prototypes as early as possible and to evaluate the users’ activity and performance.

Individual or Collective Work?

While in the vast majority of cases, work is a collective act, most work analyses focus on tasks or individual activities. Nonetheless, the fact is that technological evolution, just like work organization, today emphasizes distributed work, whether it be between workers and machines or simply within a group. What paths have been explored by authors so as to take this distribution into account (Rasmussen, Pejtersen and Schmidts 1990)? They focus on three aspects: structure, the nature of exchanges and structural lability.

Structure

Whether we view structure as elements of the analysis of people, or of services, or even of different branches of a firm working in a network, the description of the links that unite them remains a problem. We are very familiar with the organigrams within firms that indicate the structure of authority and whose various forms reflect the organizational philosophy of the firm—very hierarchically organized for a Taylor-like structure, or flattened like a rake, even matrix-like, for a more flexible structure. Other descriptions of distributed activities are possible: an example is given in figure 6. More recently, the need for firms to represent their information exchanges at a global level has led to a rethinking of information systems. Thanks to certain descriptive languages—for example, design schemas, or entity-relations-attribute matrixes—the structure of relations at the collective level can today be described in a very abstract manner and can serve as a springboard for the creation of computerized management systems.

Figure 6.  Integrated life cycle design

ERG040F5

The nature of exchanges

Simply having a description of the links uniting the entities says little about the content itself of the exchanges; of course the nature of the relation can be specified—movement from place to place, information transfers, hierarchical dependence, and so on—but this is often quite inadequate. The analysis of communications within teams has become a favored means of capturing the very nature of collective work, encompassing subjects mentioned, creation of a common language in a team, modification of communications when circumstances are critical, and so forth (Tardieu, Nanci and Pascot 1985; Rolland 1986; Navarro 1990; Van Daele 1992; Lacoste 1983; Moray, Sanderson and Vincente 1989). Knowledge of these interactions is particularly useful for the creation of computer tools, notably decision-making aids for understanding errors. The different stages and the methodological difficulties linked to the use of this evidence have been well described by Falzon (1991).

Structural lability

It is the work on activities rather than on tasks that have opened up the field of structural lability—that is to say, of the constant reconfigurations of collective work under the influence of contextual factors. Studies such as those of Rogalski (1991), who over a long period analyzed the collective activities dealing with forest fires in France, and Bourdon and Weill Fassina (1994), who studied the organizational structure set up to deal with railway accidents, are both very informative. They clearly show how the context molds the structure of exchanges, the number, and type of actors involved, the nature of the communications and the number of parameters essential to the work. The more this context fluctuates, the further the fixed descriptions of the task are removed from reality. Knowledge of this lability, and a better understanding of the phenomena that take place within it, are essential in planning for the unpredictable and in order to provide better training for those involved in collective work in a crisis.

Conclusions

The various phases of the work analysis that have been described are an iterative part of any human factors design cycle (see figure 6). In this design of any technical object, whether a tool, a workstation or a factory, in which human factors are a consideration, certain information is needed in time. In general, the beginning of the design cycle is characterized by a need for data involving environmental constraints, the types of jobs that are to be carried out, and the various characteristics of the users. This initial information allows the specifications of the object to be drawn up so as to take into account work requirements. But this is, in some sense, only a coarse model compared to the real work situation. This explains why models and prototypes are necessary that, from their inception, allow not the jobs themselves, but the activities of the future users to be evaluated. Consequently, while the design of the images on a monitor in a control room can be based on a thorough cognitive analysis of the job to be done, only a data-based analysis of the activity will allow an accurate determination of whether the prototype will actually be of use in the actual work situation (Van Daele 1988). Once the finished technical object is put into operation, greater emphasis is put on the performance of the users and on dysfunctional situations, such as accidents or human error. The gathering of this type of information allows the final corrections to be made that will increase the reliability and usability of the completed object. Both the nuclear industry and the aeronautics industry serve as an example: operational feedback involves reporting every incident that occurs. In this way, the design loop comes full circle.

 

Back

Read 13671 times Last modified on Friday, 15 November 2019 14:18

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Ergonomics References

Abeysekera, JDA, H Shahnavaz, and LJ Chapman. 1990. Ergonomics in developing countries. In Advances in Industrial Ergonomics and Safety, edited by B Das. London: Taylor & Francis.

Ahonen, M, M Launis, and T Kuorinka. 1989. Ergonomic Workplace Analysis. Helsinki: Finnish Institute of Occupational Health.

Alvares, C. 1980. Homo Faber: Technology and Culture in India, China and the West from 1500 to Present Day. The Hague: Martinus Nijhoff.

Amalberti, R. 1991. Savoir-faire de l’opérateur: aspects théoriques et pratiques en ergonomie. In Modèle en analyse du travail, edited by R Amalberti, M de Montmollin, and J Thereau. Liège: Mardaga.

Amalberti, R, M Bataille, G Deblon, A Guengant, JM Paquay, C Valot, and JP Menu. 1989. Développement d’aides intelligentes au pilotage: Formalisation psychologique et informatique d’un modèle de comportement du pologage de combat engagé en mission de pènètration. Paris: Rapport CERMA.

Åstrand, I. 1960. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand 49 Suppl. 169:1-92.

Bainbridge, L. 1981. Le contrôleur de processus. B Psychol XXXIV:813-832.

—. 1986. Asking questions and accessing knowledge. Future Comput Sys 1:143-149.

Baitsch, C. 1985. Kompetenzentwicklung und partizipative Arbeitsgestaltung. Bern: Huber.

Banks, MH and RL Miller. 1984. Reliability and convergent validity of the job component inventory. J Occup Psychol 57:181-184.

Baranson, J. 1969. Industrial Technology for Developing Economies. New York: Praeger.

Bartenwerfer, H. 1970. Psychische Beanspruchung und Erdmüdung. In Handbuch der Psychologie, edited by A Mayer and B Herwig. Göttingen: Hogrefe.

Bartlem, CS and E Locke. 1981. The Coch and French study: A critique and reinterpretation. Hum Relat 34:555-566.

Blumberg, M. 1988. Towards a new theory of job design. In Ergonomics of Hybrid Automated Systems, edited by W Karwowski, HR Parsaei, and MR Wilhelm. Amsterdam: Elsevier.

Bourdon, F and A Weill Fassina. 1994. Réseau et processus de coopération dans la gestion du trafic ferroviaire. Travail Hum. Numéro spécial consacré au travail collectif.

Brehmer, B. 1990. Towards a taxonomy for microworlds. In Taxonomy for an Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Brown DA and R Mitchell. 1986. The Pocket Ergonomist. Sydney: Group Occupational Health Centre.

Bruder. 1993. Entwicklung eines wissensbusierten Systems zur belastungsanalytisch unterscheidbaren Erholungszeit. Düsseldorf: VDI-Verlag.

Caverni, JP. 1988. La verbalisation comme source d’observables pour l’étude du fonctionnnement cognitif. In Psychologie cognitive: Modèles et méthodes, edited by JP
Caverni, C Bastien, P Mendelson, and G Tiberghien. Grenoble: Presses Univ. de Grenoble.

Campion, MA. 1988. Interdisciplinary approaches to job design: A constructive replication with extensions. J Appl Psychol 73:467-481.

Campion, MA and PW Thayer. 1985. Development and field evaluation of an inter-disciplinary measure of job design. J Appl Psychol 70:29-43.

Carter, RC and RJ Biersner. 1987. Job requirements derived from the Position Analysis Questionnaire and validity using military aptitude test scores. J Occup Psychol 60:311-321.

Chaffin, DB. 1969. A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2:429-441.

Chaffin, DB and G Andersson. 1984. Occupational Biomechanics. New York: Wiley.

Chapanis, A. 1975. Ethnic Variables in Human Factors Engineering. Baltimore: Johns Hopkins University.

Coch, L and JRP French. 1948. Overcoming resistance to change. Hum Relat 1:512-532.

Corlett, EN and RP Bishop. 1976. A technique for assessing postural discomfort. Ergonomics 19:175-182.

Corlett, N. 1988. The investigation and evaluation of work and workplaces. Ergonomics 31:727-734.

Costa, G, G Cesana, K Kogi, and A Wedderburn. 1990. Shiftwork: health, sleep and performance. Frankfurt: Peter Lang.

Cotton, JL, DA Vollrath, KL Froggatt, ML Lengnick-Hall, and KR Jennings. 1988. Employee participation: Diverse forms and different outcomes. Acad Manage Rev 13:8-22.

Cushman, WH and DJ Rosenberg. 1991. Human Factors in Product Design. Amsterdam: Elsevier.

Dachler, HP and B Wilpert. 1978. Conceptual dimensions and boundaries of participation in organizations: A critical evaluation. Adm Sci Q 23:1-39.

Daftuar, CN. 1975. The role of human factors in underdeveloped countries, with special reference to India. In Ethnic Variable in Human Factor Engineering, edited by Chapanis. Baltimore: Johns Hopkins University.

Das, B and RM Grady. 1983a. Industrial workplace layout design. An application of engineering anthropometry. Ergonomics 26:433-447.

—. 1983b. The normal working area in the horizontal plane. A comparative study between Farley’s and Squire’s concepts. Ergonomics 26:449-459.

Deci, EL. 1975. Intrinsic Motivation. New York: Plenum Press.

Decortis, F and PC Cacciabue. 1990. Modèlisation cognitive et analyse de l’activité. In Modèles et pratiques de l’analyse du travail, edited by R Amalberti, M Montmollin, and J Theureau. Brussels: Mardaga.

DeGreve, TB and MM Ayoub. 1987. A workplace design expert system. Int J Ind Erg 2:37-48.

De Keyser, V. 1986. De l’évolution des métiers. In Traité de psychologie du travail, edited by C Levy- Leboyer and JC Sperandio. Paris: Presses Universitaires de France.

—. 1992. Man within the Production Line. Proceedings of the Fourth Brite-EuRam Conference, 25-27 May, Séville, Spain. Brussels: EEC.

De Keyser, V and A Housiaux. 1989. The Nature of Human Expertise. Rapport Intermédiaire Politique Scientifique. Liège: Université de Liège.

De Keyser, V and AS Nyssen. 1993. Les erreurs humaines en anesthésie. Travail Hum 56:243-266.

De Lisi, PS. 1990. Lesson from the steel axe: Culture, technology and organizational change. Sloan Manage Rev 32:83-93.

Dillon, A. 1992. Reading from paper versus screen: A critical review of the empirical literature. Ergonomics 35:1297-1326.

Dinges, DF. 1992. Probing the limits of functional capacity: The effects of sleep loss on short-duration tasks. In Sleep, Arousal, and Performance, edited by RJ Broughton and RD Ogilvie. Boston: Birkhäuser.

Drury, CG. 1987. A biomechanical evaluation of the repetitive motion injury potential of industrial jobs. Sem Occup Med 2:41-49.

Edholm, OG. 1966. The assessment of habitual activity. In Physical Activity in Health and Disease, edited by K Evang and K Lange-Andersen. Oslo: Universitetterlaget.

Eilers, K, F Nachreiner, and K Hänicke. 1986. Entwicklung und Überprüfung einer Skala zur Erfassung subjektiv erlebter Anstrengung. Zeitschrift für Arbeitswissenschaft 40:215-224.

Elias, R. 1978. A medicobiological approach to workload. Note No. 1118-9178 in Cahiers De Notes Documentaires—Sécurité Et Hygiène Du Travail. Paris: INRS.

Elzinga, A and A Jamison. 1981. Cultural Components in the Scientific Attitude to Nature: Eastern and Western Mode. Discussion paper No. 146. Lund: Univ. of Lund, Research Policy Institute.

Emery, FE. 1959. Characteristics of Socio-Technical Systems. Document No. 527. London: Tavistock.

Empson, J. 1993. Sleep and Dreaming. New York: Harvester Wheatsheaf.

Ericson, KA and HA Simon. 1984. Protocol Analysis: Verbal Reports As Data. Cambridge, Mass.: MIT Press.

European Committee for Standardization (CEN). 1990. Ergonomic Principles of the Design of Work Systems. EEC Council Directive 90/269/EEC, The Minimum Health and Safety Requirements for the Manual Handling of Loads. Brussels: CEN.

—. 1991. CEN Catalogue 1991: Catalogue of European Standards. Brussels: CEN.

—. 1994. Safety of Machinery: Ergonomic Design Principles. Part 1: Terminology and General Principles. Brussels: CEN.

Fadier, E. 1990. Fiabilité humaine: méthodes d’analyse et domaines d’application. In Les facteurs humains de la fiabilité dans les systèmes complexes, edited by J Leplat and G De Terssac. Marseilles: Octares.

Falzon, P. 1991. Cooperative dialogues. In Distributed Decision Making. Cognitive Models for Cooperative Works, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Faverge, JM. 1972. L’analyse du travail. In Traité de psychologie appliqueé, edited by M Reuchlin. Paris: Presses Universitaires de France.

Fisher, S. 1986. Stress and Strategy. London: Erlbaum.

Flanagan, JL. 1954. The critical incident technique. Psychol Bull 51:327-358.

Fleishman, EA and MK Quaintance. 1984. Toxonomies of Human Performance: The Description of Human Tasks. New York: Academic Press.

Flügel, B, H Greil, and K Sommer. 1986. Anthropologischer Atlas. Grundlagen und Daten. Deutsche Demokratische Republik. Berlin: Verlag tribüne.

Folkard, S and T Akerstedt. 1992. A three-process model of the regulation of alertness sleepiness. In Sleep, Arousal and Performance, edited by RJ Broughton and BD Ogilvie. Boston: Birkhäuser.

Folkard, S and TH Monk. 1985.  Hours of work: Temporal factors in work scheduling . Chichester: Wiley.

Folkard, S, TH Monk, and MC Lobban. 1978. Short and long-term adjustment of circadian rhythms in “permanent” night nurses. Ergonomics 21:785-799.

Folkard, S, P Totterdell, D Minors and J Waterhouse. 1993. Dissecting circadian performance rhythms: Implications for shiftwork.  Ergonomics  36(1-3):283-88.

Fröberg, JE. 1985. Sleep deprivation and prolonged working hours. In Hours of Work: Temporal Factors in Work Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

Fuglesang, A. 1982. About Understanding Ideas and Observations on Cross-Cultural
Communication. Uppsala: Dag Hammarskjöld Foundation.

Geertz, C. 1973. The Interpretation of Cultures. New York: Basic Books.

Gilad, I. 1993. Methodology for functional ergonomic evaluation of repetitive operations. In Advances in Industrial Egonomics and Safety, edited by Nielsen and Jorgensen. London: Taylor & Francis.

Gilad, I and E Messer. 1992. Biomechanics considerations and ergonomic design in diamond polishing. In Advances in Industrial Ergonomics and Safety, edited by Kumar. London: Taylor & Francis.

Glenn, ES and CG Glenn. 1981. Man and Mankind: Conflict and Communication between Cultures. Norwood, NJ: Ablex.

Gopher, D and E Donchin. 1986. Workload—An examination of the concept. In Handbook of Perception and Human Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Gould, JD. 1988. How to design usable systems. In Handbook of Human Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Gould, JD and C Lewis. 1985. Designing for usability: Key principles and what designers think. Commun ACM 28:300-311.

Gould, JD, SJ Boies, S Levy, JT Richards, and J Schoonard. 1987. The 1984 Olympic message system: A test of behavioral principles of the design. Commun ACM 30:758-769.

Gowler, D and K Legge. 1978. Participation in context: Towards a synthesis of the theory and practice of organizational change, part I. J Manage Stud 16:150-175.

Grady, JK and J de Vries. 1994. RAM: The Rehabilitation Technology Acceptance Model as a Base for an Integral Product Evaluation. Instituut voor Research, Ontwikkeling en Nascholing in de Gezondheidszorg (IRON) and University Twente, Department of Biomedical Engineering.

Grandjean, E. 1988. Fitting the Task to the Man. London: Taylor & Francis.

Grant, S and T Mayes. 1991. Cognitive task analysis? In Human-Computer Interactionand Complex Systems, edited by GS Weir and J Alty. London: Academic Press.

Greenbaum, J and M Kyng. 1991. Design At Work: Cooperative Design of Computer Systems. Hillsdale, NJ: Lawrence Erlbaum.

Greuter, MA and JA Algera. 1989. Criterion development and job analysis. In Assessment and Selection in Organizations, edited by P Herlot. Chichester: Wiley.

Grote, G. 1994. A participatory approach to the complementary design of highly automated work systems. In Human Factors in Organizational Design and Management, edited by G Bradley and HW Hendrick. Amsterdam: Elsevier.

Guelaud, F, M-N Beauchesne, J Gautrat, and G Roustang. 1977. Pour une analyse des conditions du travail ouvrier dans l’entreprise. Paris: A. Colin.

Guillerm, R, E Radziszewski, and A Reinberg. 1975. Circadian rhythms of six healthy young men over a 4-week period with night-work every 48 h and a 2 per cent Co2 atmosphere. In Experimental Studies of Shiftwork, edited by P Colquhoun, S Folkard, P Knauth, and J Rutenfranz. Opladen: Westdeutscher Werlag.

Hacker, W. 1986. Arbeitspsychologie. In Schriften zur Arbeitpsychologie, edited by E Ulich. Bern: Huber.

Hacker, W and P Richter. 1994. Psychische Fehlbeanspruchung. Ermüdung, Monotonie, Sättigung, Stress. Heidelberg: Springer.

Hackman, JR and GR Oldham. 1975. Development of the job diagnostic survey. J Appl Psychol 60:159-170.

Hancock, PA and MH Chignell. 1986. Toward a Theory of Mental Work Load: Stress and Adaptability in Human-Machine Systems. Proceedings of the IEEE International Conference On Systems, Man, and Cybernetics. New York: IEEE Society.

Hancock, PA and N Meshkati. 1988. Human Mental Workload. Amsterdam: North Holland.

Hanna, A (ed.). 1990. Annual Design Review ID. 37 (4).

Härmä, M. 1993. Individual differences in tolerance to shiftwork: a review.  Ergonomics  36:101-109.

Hart, S and LE Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Human Mental Work Load, edited by PA Hancock and N Meshkati. Amsterdam: North Holland.

Hirschheim, R and HK Klein. 1989. Four paradigms of information systems development. Commun ACM 32:1199-1216.

Hoc, JM. 1989. Cognitive approaches to process control. In Advances in Cognitive Science, edited by G Tiberghein. Chichester: Horwood.

Hofstede, G. 1980. Culture’s Consequences: International Differences in Work-Related Values. Beverly Hills, Calif.: Sage Univ. Press.

—. 1983. The cultural relativity of organizational practices and theories. J Int Stud :75-89.

Hornby, P and C Clegg. 1992. User participation in context: A case study in a UK bank. Behav Inf Technol 11:293-307.

Hosni, DE. 1988. The transfer of microelectronics technology to the third world. Tech Manage Pub TM 1:391-3997.

Hsu, S-H and Y Peng. 1993. Control/display relationship of the four-burner stove: A reexamination. Hum Factors 35:745-749.

International Labour Organization (ILO). 1990.The hours we work: new work schedules in policy and practice. Cond Wor Dig 9.

International Organization for Standardization (ISO). 1980. Draft Proposal for Core List of Anthropometric Measurements ISO/TC 159/SC 3 N 28 DP 7250. Geneva: ISO.

—. 1996. ISO/DIS 7250 Basic Human Body Measurements for Technological Design. Geneva: ISO.
Japan Industrial Design Promotion Organization (JIDPO). 1990. Good Design Products 1989. Tokyo: JIDPO.

Jastrzebowski, W. 1857. Rys ergonomiji czyli Nauki o Pracy, opartej naprawdach poczerpnietych z Nauki Przyrody. Przyoda i Przemysl 29:227-231.

Jeanneret, PR. 1980. Equitable job evaluation and classification with the Position Analysis Questionnaire. Compens Rev 1:32-42.

Jürgens, HW, IA Aune, and U Pieper. 1990. International data on anthropometry. Occupational Safety and Health Series. Geneva: ILO.

Kadefors, R. 1993. A model for assessment and design of workplaces for manual welding. In The Ergonomics of Manual Work, edited by WS Marras, W Karwowski, and L Pacholski. London: Taylor & Francis.

Kahneman, D. 1973. Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.

Karhu, O, P Kansi, and I Kuorinka. 1977. Correcting working postures in industry: A practical method for analysis. Appl Ergon 8:199-201.

Karhu, O, R Harkonen, P Sorvali, and P Vepsalainen. 1981. Observing working postures in industry: Examples of OWAS application. Appl Ergon 12:13-17.

Kedia, BL and RS Bhagat. 1988. Cultural constraints on transfer of technology across nations: Implications for research in international and comparative management. Acad Manage Rev 13:559-571.

Keesing, RM. 1974. Theories of culture. Annu Rev Anthropol 3:73-79.

Kepenne, P. 1984. La charge de travail dans une unité de soins de médecine. Mémoire. Liège: Université de Liège.

Kerguelen, A. 1986. L’observation systématique en ergonomie: Élaboration d’un logiciel d’aide au recueil et à l’analyse des données. Diploma in Ergonomics Thesis, Conservatoire National des Arts et Métiers, Paris.

Ketchum, L. 1984. Sociotechnical design in a third world country: The railway maintenance depot at Sennar in Sudan. Hum Relat 37:135-154.

Keyserling, WM. 1986. A computer-aided system to evaluate postural stress in the workplace. Am Ind Hyg Assoc J 47:641-649.

Kingsley, PR. 1983. Technological development: Issues, roles and orientation for social psychology. In Social Psychology and Developing Countries, edited by Blacker. New York: Wiley.

Kinney, JS and BM Huey. 1990. Application Principles for Multicolored Displays. Washington, DC: National Academy Press.

Kivi, P and M Mattila. 1991. Analysis and improvement of work postures in building industry: Application of the computerized OWAS method. Appl Ergon 22:43-48.

Knauth, P, W Rohmert and J Rutenfranz. 1979. Systemic selection of shift plans for continuous production with the aid of work-physiological criteria. Appl Ergon 10(1):9-15.

Knauth, P. and J Rutenfranz. 1981. Duration of sleep related to the type of shift work, in  Night and shiftwork: biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford Pergamon Press.

Kogi, K. 1982. Sleep problems in night and shift work. II. Shiftwork: Its practice and improvement . J Hum Ergol:217-231.

—. 1981. Comparison of resting conditions between various shift rotation systems for industrial workers, in  Night and shift work. Biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford: Pergamon.

—. 1985. Introduction to the problems of shiftwork. In Hours of Work: Temporal Factors in Work-Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

—. 1991. Job content and working time: The scope for joint change. Ergonomics 34:757-773.

Kogi, K and JE Thurman. 1993. Trends in approaches to night and shiftwork and new international standards. Ergonomics 36:3-13.

Köhler, C, M von Behr, H Hirsch-Kreinsen, B Lutz, C Nuber, and R Schultz-Wild. 1989. Alternativen der Gestaltung von Arbeits- und Personalstrukturen bei rechnerintegrierter Fertigung. In Strategische Optionen der Organisations- und Personalentwicklung bei CIM Forschungsbericht KfK-PFT 148, edited by Institut für Sozialwissenschaftliche Forschung. Karlsruhe: Projektträgerschaft Fertigungstechnik.

Koller, M. 1983. Health risks related to shift work. An example of time-contingent effects of long-term stress. Int Arch Occ Env Health 53:59-75.

Konz, S. 1990. Workstation organization and design. Ergonomics 32:795-811.

Kroeber, AL and C Kluckhohn. 1952. Culture, a critical review of concepts and definitions. In Papers of the Peabody Museum. Boston: Harvard Univ.

Kroemer, KHE. 1993. Operation of ternary chorded keys. Int J Hum Comput Interact 5:267-288.

—. 1994a. Locating the computer screen: How high, how far? Ergonomics in Design (January):40.

—. 1994b. Alternative keyboards. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

—. 1995. Ergonomics. In Fundamentals of Industrial Hygiene, edited by BA Ploog. Chicago: National Safety Council.

Kroemer, KHE, HB Kroemer, and KE Kroemer-Elbert. 1994. Ergonomics: How to Design for Ease and Efficiency. Englewood Cliffs, NJ: Prentice Hall.

Kwon, KS, SY Lee, and BH Ahn. 1993. An approach to fuzzy expert systems for product colour design. In The Ergonomics of Manual Work, edited by Maras, Karwowski, Smith, and Pacholski. London: Taylor & Francis.

Lacoste, M. 1983. Des situations de parole aux activités interprétives. Psychol Franç 28:231-238.

Landau, K and W Rohmert. 1981. AET-A New Job Analysis Method. Detroit, Mich.: AIIE Annual Conference.

Laurig, W. 1970. Elektromyographie als arbeitswissenschaftliche Untersuchungsmethode zur Beurteilung von statischer Muskelarbeit. Berlin: Beuth.

—. 1974. Beurteilung einseitig dynamischer Muskelarbeit. Berlin: Beuth.

—. 1981. Belastung, Beanspruchung und Erholungszeit bei energetisch-muskulärer Arbeit—Literaturexpertise. In Forschungsbericht Nr. 272 der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund. Bremerhaven: Wirtschaftsverlag NW.

—. 1992. Grundzüge der Ergonomie. Erkenntnisse und Prinzipien. Berlin, Köln: Beuth Verlag.

Laurig, W and V Rombach. 1989. Expert systems in ergonomics: Requirements and an approach. Ergonomics 32:795-811.

Leach, ER. 1965. Culture and social cohesion: An anthropologist’s view. In Science and Culture, edited by Holten. Boston: Houghton Mifflin.

Leana, CR, EA Locke, and DM Schweiger. 1990. Fact and fiction in analyzing research on participative decision making: A critique of Cotton, Vollrath, Froggatt, Lengnick-Hall, and Jennings. Acad Manage Rev 15:137-146.

Lewin, K. 1951. Field Theory in Social Science. New York: Harper.

Liker, JK, M Nagamachi, and YR Lifshitz. 1988. A Comparitive Analysis of Participatory Programs in US and Japan Manufacturing Plants. Ann Arbor, Mich.: Univ. of Michigan, Center for Ergonomics, Industrial and Operational Engineering.

Lillrank, B and N Kano. 1989. Continuous Improvement: Quality Control Circles in Japanese Industries. Ann Arbor, Mich.: Univ. of Michigan, Center for Japanese Studies.

Locke, EA and DM Schweiger. 1979. Participation in decision making: One more look. In Research in Organizational Behavior, edited by BM Staw. Greenwich, Conn.: JAI Press.

Louhevaara, V, T Hakola, and H Ollila. 1990. Physical work and strain involved in manual sorting of postal parcels. Ergonomics 33:1115-1130.

Luczak, H. 1982.  Belastung, Beanspruchung und Erholungszeit bei informatorisch- mentaler Arbeit — Literaturexpertise. Forschungsbericht der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund . Bremerhaven: Wirtschaftsverlag NW.

—. 1983. Ermüdung. In Praktische Arbeitsphysiologie, edited by W Rohmert and J Rutenfranz. Stuttgart: Georg Thieme Verlag.

—. 1993. Arbeitswissenschaft. Berlin: Springer Verlag.

Majchrzak, A. 1988. The Human Side of Factory Automation. San Francisco: Jossey-Bass.

Martin, T, J Kivinen, JE Rijnsdorp, MG Rodd, and WB Rouse. 1991. Appropriate automation-integrating technical, human, organization, economic and cultural factors. Automatica 27:901-917.

Matsumoto, K and M Harada. 1994. The effect of night-time naps on recovery from fatigue following night work. Ergonomics 37:899-907.

Matthews, R. 1982. Divergent conditions in the technological development of India and Japan. Lund Letters on Technology and Culture, No. 4. Lund: Univ. of Lund, Research Policy Institute.

McCormick, EJ. 1979. Job Analysis: Methods and Applications. New York: American Management Association.

McIntosh, DJ. 1994. Integration of VDUs into the US office work environment. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

McWhinney. 1990. The Power of Myth in Planning and Organizational Change, 1989 IEEE Technics, Culture and Consequences. Torrence, Calif.: IEEE Los Angeles Council.

Meshkati, N. 1989. An etiological investigation of micro and macroergonomics factors in the Bhopal disaster: Lessons for industries of both industrialized and developing countries. Int J Ind Erg 4:161-175.

Minors, DS and JM Waterhouse. 1981. Anchor sleep as a synchronizer of rhythms on abnormal routines.  Int J Chronobiology : 165-188.

Mital, A and W Karwowski. 1991. Advances in Human Factors/Ergonomics. Amsterdam: Elsevier.

Monk, TH. 1991.  Sleep, Sleepiness and Performance . Chichester: Wiley.

Moray, N, PM Sanderson, and K Vincente. 1989. Cognitive task analysis for a team in a complex work domain: A case study. Proceedings of the Second European Meeting On Cognitive Science Approaches to Process Control, Siena, Italy.

Morgan, CT, A Chapanis, JS III Cork, and MW Lund. 1963. Human Engineering Guide to Equipment Design. New York: McGraw-Hill.

Mossholder, KW and RD Arvey. 1984. Synthetic validity: A conceptual and comparative review. J Appl Psychol 69:322-333.

Mumford, E and Henshall. 1979. A Participative Approach to Computer Systems Design. London: Associated Business Press.

Nagamachi, M. 1992. Pleasantness and Kansei engineering. In Measurement Standards. Taejon, Korea: Korean Research Institute of Standards and Science Publishing.

National Institute for Occupational Safety and Health (NIOSH). 1981. Work Practices Guide for Manual Lifting. Cincinnati, Ohio: US Department of Health and Human Services.

—. 1990. OSHA Instruction CPL 2.85: Directorate of Compliance Programs: Appendix C, Guidelines Auggested By NIOSH for Videotape Evaluation of Work Station for Upper Extremities Cumulative Trauma Disorders. Washington, DC: US Department of Health and Human Services.

Navarro, C. 1990. Functional communication and problem-solving in a bus traffic-regulation task. Psychol Rep 67:403-409.

Negandhi, ART. 1975. Modern Organizational Behaviour. Kent: Kent Univ..

Nisbett, RE and TD De Camp Wilson. 1977. Telling more than we know. Psychol Rev 84:231-259.

Norman, DA. 1993. Things That Make Us Smart. Reading: Addison-Wesley.

Noro, K and AS Imada. 1991. Participatory Ergonomics. London: Taylor & Francis.

O’Donnell, RD and FT Eggemeier. 1986. Work load assessment methodology. In Handbook of Perception and Human Performance. Cognitive Processes and Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Pagels, HR. 1984. Computer culture: The scientific, intellectual and social impact of the computer. Ann NY Acad Sci :426.

Persson, J and Å Kilbom. 1983. VIRA—En Enkel Videofilmteknik För Registrering OchAnalys Av Arbetsställningar Och—Rörelser. Solna, Sweden: Undersökningsrapport,Arbetraskyddsstyrelsen.

Pham, DT and HH Onder. 1992. A knowledge-based system for optimizing workplace layouts using a genetic algorithm. Ergonomics 35:1479-1487.

Pheasant, S. 1986. Bodyspace, Anthropometry, Ergonomics and Design. London: Taylor & Francis.

Poole, CJM. 1993. Seamstress’ finger. Brit J Ind Med 50:668-669.

Putz-Anderson, V. 1988. Cumulative Trauma Disorders. A Manual for Musculoskeletal Diseases of the Upper Limbs. London: Taylor & Francis.

Rasmussen, J. 1983. Skills, rules, and knowledge: Sinds, signs, symbols and other distinctions in human performance models. IEEE T Syst Man Cyb 13:257-266.

—. 1986. A framework for cognitive task analysis in systems design. In Intelligent Decision Support in Process Environments, edited by E Hollnagel, G Mancini, and DD Woods. Berlin: Springer.

Rasmussen, J, A Pejtersen, and K Schmidts. 1990. In Taxonomy for Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Reason, J. 1989. Human Error. Cambridge: CUP.

Rebiffé, R, O Zayana, and C Tarrière. 1969. Détermination des zones optimales pour l’emplacement des commandes manuelles dans l’espace de travail. Ergonomics 12:913-924.

Régie nationale des usines Renault (RNUR). 1976. Les profils de poste: Methode d’analyse des conditions de travail. Paris: Masson-Sirtes.

Rogalski, J. 1991. Distributed decision making in emergency management: Using a method as a framework for analysing cooperative work and as a decision aid. In Distributed Decision Making. Cognitive Models for Cooperative Work, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Rohmert, W. 1962. Untersuchungen über Muskelermüdung und Arbeitsgestaltung. Bern: Beuth-Vertrieb.

—. 1973. Problems in determining rest allowances. Part I: Use of modern methods to evaluate stress and strain in static muscular work. Appl Ergon 4(2):91-95.

—. 1984. Das Belastungs-Beanspruchungs-Konzept. Z Arb wiss 38:193-200.

Rohmert, W and K Landau. 1985. A New Technique of Job Analysis. London: Taylor & Francis.

Rolland, C. 1986. Introduction à la conception des systèmes d’information et panorama des méthodes disponibles. Génie Logiciel 4:6-11.

Roth, EM and DD Woods. 1988. Aiding human performance. I. Cognitive analysis. Travail Hum 51:39-54.

Rudolph, E, E Schönfelder, and W Hacker. 1987. Tätigkeitsbewertungssystem für geistige arbeit mit und ohne Rechnerunterstützung (TBS-GA). Berlin: Psychodiagnostisches Zentrum der Humboldt-Universität.

Rutenfranz, J. 1982. Occupational health measures for night- and shiftworkers. II. Shiftwork: Its practice and improvement. J Hum Ergol:67-86.

Rutenfranz, J, J Ilmarinen, F Klimmer, and H Kylian. 1990. Work load and demanded physical performance capacity under different industrial working conditions. In Fitness for Aged, Disabled, and Industrial Workers, edited by M Kaneko. Champaign, Ill.: Human Kinetics Books.

Rutenfranz, J, P Knauth, and D Angersbach. 1981. Shift work research issues. In  Biological Rhythms, Sleep and Shift Work , edited by LC Johnson, DI Tepas, WP Colquhoun, and MJ Colligan. New York: Spectrum Publications Medical and Scientific Books.

Saito, Y. and K Matsumoto. 1988. Variations of physiological functions and psychological measures and their relationship on delayed shift of sleeping time.  Jap J Ind Health  30:196-205.

Sakai, K, A Watanabe, N Onishi, H Shindo, K Kimotsuki, H Saito, and K Kogl. 1984. Conditions of night naps effective to facilitate recovery from night work fatigue.  J Sci  Lab 60: 451-478.

Savage, CM and D Appleton. 1988. CIM and Fifth Generation Management. Dearborn: CASA/SME Technical Council.

Savoyant, A and J Leplat. 1983. Statut et fonction des communications dans l’activité des équipes de travail. Psychol Franç 28:247-253.

Scarbrough, H and JM Corbett. 1992. Technology and Organization. London: Routledge.

Schmidtke, H. 1965. Die Ermüdung. Bern: Huber.

—. 1971. Untersuchungen über den Erholunggszeitbedarf bei verschiedenen Arten gewerblicher Tätigkeit. Berlin: Beuth-Vertrieb.

Sen, RN. 1984. Application of ergonomics to industrially developing countries. Ergonomics 27:1021-1032.

Sergean, R. 1971. Managing Shiftwork. London: Gower Press.

Sethi, AA, DHJ Caro, and RS Schuler. 1987. Strategic Management of Technostress in an Information Society. Lewiston: Hogrefe.

Shackel, B. 1986. Ergonomics in design for usability. In People and Computer: Design for Usability, edited by MD Harrison and AF Monk. Cambridge: Cambridge Univ. Press.

Shahnavaz, H. 1991. Transfer of Technology to Industrially Developing Countries and Human Factors Consideration TULEÅ 1991: 22, 23024. Luleå Univ., Luleå, Sweden: Center for Ergonomics of Developing Countries.

Shahnavaz, H, J Abeysekera, and A Johansson. 1993. Solving multi-factorial work-environment problems through participatory ergonomics: Case study: VDT operators. In Ergonomics of Manual Work, edited by E Williams, S Marrs, W Karwowski, JL Smith, and L Pacholski. London: Taylor & Francis.

Shaw, JB and JH Riskind. 1983. Predicting job stress using data from the Position Analysis Questionnaire (PAQ). J Appl Psychol 68:253-261.

Shugaar, A. 1990. Ecodesign: New products for a greener culture. Int Herald Trib, 17.

Sinaiko, WH. 1975. Verbal factors in human engineering: Some cultural and psychological data. In Ethnic Variables in Human Factors Engineering, edited by A Chapanis. Baltimore: Johns Hopkins Univ..

Singleton, WT. 1982. The Body At Work. Cambridge: CUP.

Snyder, HL. 1985a. Image quality: Measures and visual performance. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

—. 1985b. The visual system: Capabilities and limitations. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

Solomon, CM. 1989. The corporate response to work force diversity. Pers J 68:42-53.

Sparke, P. 1987. Modern Japanese Design. New York: EP Dutton.

Sperandio, JC. 1972. Charge de travail et régulation des processus opératoires. Travail Hum 35:85-98.

Sperling, L, S Dahlman, L Wikström, A Kilbom, and R Kadefors. 1993. A cube model for the classification of work with hand tools and the formulation of functional requirements. Appl Ergon 34:203-211.

Spinas, P. 1989. User oriented software development and dialogue design. In Work With Computers: Organizational, Management, Stress and Health Aspects, edited by MJ Smith and G Salvendy. Amsterdam: Elsevier.

Staramler, JH. 1993. The Dictionary of Human Factors Ergonomics. Boca Raton: CRC Press.

Strohm, O, JK Kuark, and A Schilling. 1993. Integrierte Produktion: Arbeitspsychologische Konzepte und empirische Befunde, Schriftenreihe Mensch, Technik, Organisation. In CIM—Herausforderung an Mensch, Technik, Organisation, edited by G Cyranek and E Ulich. Stuttgart, Zürich: Verlag der Fachvereine.

Strohm, O, P Troxler and E Ulich. 1994. Vorschlag für die Restrukturierung eines
Produktionsbetriebes. Zürich: Institut für Arbietspsychologie der ETH.

Sullivan, LP. 1986. Quality function deployment: A system to assure that customer needs drive the product design and production process. Quality Progr :39-50.

Sundin, A, J Laring, J Bäck, G Nengtsson, and R Kadefors. 1994. An Ambulatory Workplace for Manual Welding: Productivity through Ergonomics. Manuscript. Göteborg: Lindholmen Development.

Tardieu, H, D Nanci, and D Pascot. 1985. Conception d’un système d’information. Paris: Editions d’Organisation.

Teiger, C, A Laville, and J Durafourg. 1974. Taches répétitives sous contrainte de temps et charge de travail. Rapport no 39. Laboratoire de physiologie du travail et d’ergonomie du CNAM.

Torsvall, L, T Akerstedt, and M. Gillberg. 1981. Age, sleep and irregular workhours: a field study with EEG recording, catecholamine excretion and self-ratings.  Scand J Wor Env Health  7:196-203.

Ulich, E. 1994. Arbeitspsychologie 3. Auflage. Zürich: Verlag der Fachvereine and Schäffer-Poeschel.

Ulich, E, M Rauterberg, T Moll, T Greutmann, and O Strohm. 1991. Task orientation and user-oriented dialogue design. In  Int J Human-Computer Interaction  3:117-144.

United Nations Educational, Scientific and Cultural Organization (UNESCO). 1992. Ergonomics Impact of Science on Society. Vol. 165. London: Taylor & Francis.

Van Daele, A. 1988. L’écran de visualisation ou la communication verbale? Analyse comparative de leur utilisation par des opérateurs de salle de contrôle en sidérurgie. Travail Hum 51(1):65-80.

—. 1992. La réduction de la complexité par les opérateurs dans le contrôle de processus continus. contribution à l’étude du contrôle par anticipation et de ses conditions de mise en œuvre. Liège: Université de Liège.

Van der Beek, AJ, LC Van Gaalen, and MHW Frings-Dresen. 1992. Working postures and activities of lorry drivers: A reliability study of on-site observation and recording on a pocket computer. Appl Ergon 23:331-336.

Vleeschdrager, E. 1986.  Hardness 10: diamonds . Paris.

Volpert, W. 1987. Psychische Regulation von Arbeitstätigkeiten. In Arbeitspsychologie. Enzklopüdie der Psychologie, edited by U Kleinbeck and J Rutenfranz. Göttingen: Hogrefe.

Wagner, R. 1985. Job analysis at ARBED. Ergonomics 28:255-273.

Wagner, JA and RZ Gooding. 1987. Effects of societal trends on participation research. Adm Sci Q 32:241-262.

Wall, TD and JA Lischeron. 1977. Worker Participation: A Critique of the Literature and Some Fresh Evidence. London: McGraw-Hill.

Wang, WM-Y. 1992. Usability Evaluation for Human-Computer Interaction (HCI). Luleå, Sweden: Luleå Univ. of Technology.

Waters, TR, V Putz-Anderson, A Garg, and LJ Fine. 1993. Revised NIOSH equation for the design and evaluation of manual handling tasks. Ergonomics 36:749-776.

Wedderburn, A. 1991. Guidelines for shiftworkers. Bulletin of European Shiftwork Topics (BEST) No. 3. Dublin: European Foundation for the Improvement of Living and Working Conditions.

Welford, AT. 1986. Mental workload as a function of demand, capacity, strategy and skill. Ergonomics 21:151-176.

White, PA. 1988. Knowing more about what we tell: ‘Introspective access’ and causal report accuracy, 10 years later. Brit J Psychol 79:13-45.

Wickens, C. 1992. Engineering Psychology and Human Performance. New York: Harper Collins.

Wickens, CD and YY Yeh. 1983. The dissociation between subjective work load and performance: A multiple resources approach. In Proceedings of the Human Factors Society 27th Annual Meeting. Santa Monica, Calif.: Human Factors Society.

Wieland-Eckelmann, R. 1992. Kognition, Emotion und Psychische Beanspruchung. Göttingen: Hogrefe.

Wikström.L, S Byström, S Dahlman, C Fransson, R Kadefors, Å Kilbom, E Landervik, L Lieberg, L Sperling, and J Öster. 1991. Criterion for Selection and Development of Hand Tools. Stockholm: National Institute of Occupational Health.

Wilkinson, RT. 1964. Effects of up to 60 hours sleep deprivation on different types of work. Ergonomics 7:63-72.

Williams, R. 1976. Keywords: A Vocabulary of Culture and Society. Glasgow: Fontana.

Wilpert, B. 1989. Mitbestimmung. In Arbeits- und Organisationspsychologie. Internationales Handbuch in Schlüsselbegriffen, edited by S Greif, H Holling, and N Nicholson. Munich: Psychologie Verlags Union.

Wilson, JR. 1991. Participation: A framework and foundation for ergonomics. J Occup Psychol 64:67-80.

Wilson, JR and EN Corlett. 1990. Evaluation of Human Work: A Practical Ergonomics Methodology. London: Taylor & Francis.

Wisner, A. 1983. Ergonomics or anthropology: A limited or wide approach to working condition in technology transfer. In Proceedings of the First International Conference On Ergonomics of Developing Countries, edited by Shahnavaz and Babri. Luleå, Sweden: Luleå Univ. of Technology.

Womack, J, T Jones, and D Roos. 1990. The Machine That Changed the World. New York: Macmillan.

Woodson, WE, B Tillman, and P Tillman. 1991. Human Factors Design Handbook. New York: McGraw-Hill.

Zhang, YK and JS Tyler. 1990. The establishment of a modern telephone cable production facility in a developing country. A case study. In International Wire and Cable Symposium Proceedings. Illinois.

Zinchenko, V and V Munipov. 1989. Fundamentals of Ergonomics. Moscow: Progress.