Thursday, 31 March 2011 17:29

Case Studies of Air Traffic Controllers in the United States and Italy

Rate this item
(0 votes)

United States

High levels of stress among air traffic controllers (ATCs) were first widely reported in the United States in the 1970 Corson Report (US Senate 1970), which focused on working conditions such as overtime, few regular work breaks, increasing air traffic, few vacations, poor physical work environment and “mutual resentment and antagonism” between management and labour. Such conditions contributed to ATC job actions in 1968–69. In addition, early medical research, including a major 1975–78 Boston University study (Rose, Jenkins and Hurst 1978), suggested that ATCs may face a higher risk of stress-related illness, including hypertension.

Following the 1981 US ATC strike, in which job stress was a major issue, the Department of Transportation again appointed a task force to examine stress and morale. The resulting 1982 Jones Report indicated that FAA employees in a wide variety of job titles reported negative results for job design, work organization, communication systems, supervisory leadership, social support and satisfaction. The typical form of ATC stress was an acute episodic incident (such as a near mid-air collision) along with interpersonal tensions stemming from management style. The task force reported that 6% of the ATC sample was “burned out” (having a large and debilitating loss of self-confidence in ability to do the job). This group represented 21% of those 41 years of age and older and 69% of those with 19 or more years of service.

A 1984 review by the Jones task force of its recommendations concluded that “conditions are as bad as in 1981, or perhaps a bit worse”. Major concerns were increasing traffic volume, inadequate staffing, low morale and an increasing burnout rate. Such conditions led to the re-unionization of US ATCs in 1987 with the election of the National Air Traffic Controllers Organization (NATCA) as their bargaining representative.

In a 1994 survey, New York City area ATCs reported continuing staffing shortages and concerns about job stress, shift work and indoor air quality. Recommendations for improving morale and health included transfer opportunities, early retirement, more flexible schedules, exercise facilities at work and increased staffing. In 1994, a greater proportion of Level 3 and 5 ATCs reported high burnout than ATCs in 1981 and 1984 national surveys (except for ATCs working in centres in 1984). Level 5 facilities have the highest level of air traffic, and Level 1, the lowest (Landsbergis et al. 1994). Feelings of burnout were related to having experienced a “near miss” in the past 3 years, age, years working as an ATC, working in high-traffic Level 5 facilities, poor work organization and poor supervisor and co-worker support.

Research also continues on appropriate shift schedules for ATCs, including the possibility of a 10-hour, 4-day shift schedule. The long-term health effects of the combination of rotating shifts and compressed work weeks are not known.

A collectively bargained programme to reduce ATC job stress in Italy

The company in charge of all civil air traffic in Italy (AAAV) employs 1,536 ATCs. AAAV and union representatives drew up several agreements between 1982 and 1991 to improve working conditions. These include:

1.  Modernizing radio systems and automating aeronautical information, flight data processing and air traffic management. This provided for more reliable information and more time for making decisions, eliminating many risky traffic peaks and providing for a more balanced workload.

2.  Reducing work hours. The operative work week is now 28 to 30 hours.

3. Changing shift schedules:

  • rapid shift speed: one day on each shift
  • one night shift followed by 2 days rest
  • adjust of shift length to workload: 5 to 6 hours for morning; 7 hours for afternoon; 11 to 12 hours for night
  • short naps on the night shift
  • keeping shift rotation as regular as possible to allow better organization of personal, family and social life
  • a long break (45 to 60 minutes) for a meal during work shifts.

 

4.  Reduce environmental stressors. Attempts have been made to reduce noise and provide more light.

5.  Improving the ergonomics of new consoles, screens and chairs.

6.  Improving physical fitness. Gyms are provided in the largest facilities.

Research during this period suggests that the programme was beneficial. The night shift was not very stressful; ATCs’ performance did not worsen significantly at the end of three shifts; only 28 ATCs were dismissed for health reasons in 7 years; and a large decline in “near misses” occurred despite major increases in air traffic.

 

Back

Read 8898 times Last modified on Saturday, 30 July 2022 22:48

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Transport Industry and Warehousing References

American National Standards Institute (ANSI). 1967. Illumination. ANSI A11.1-1967. New York: ANSI.

Anton, DJ. 1988. Crash dynamics and restraint systems. In Aviation Medicine, 2nd edition, edited by J Ernsting and PF King. London: Butterworth.

Beiler, H and U Tränkle. 1993. Fahrerarbeit als Lebensarbeitsperpektive. In Europäische Forschungsansätze zur Gestaltung der Fahrtätigkeit im ÖPNV (S. 94-98) Bundesanstat für Arbeitsschutz. Bremerhaven: Wirtschaftsverlag NW.

Bureau of Labor Statistics (BLS). 1996. Safety and Health Statistics. Washington, DC: BLS.

Canadian Urban Transit Association. 1992. Ergonomic Study of the Driver’s Workstation in Urban Buses. Toronto: Canadian Urban Transit Association.

Decker, JA. 1994. Health Hazard Evaluation: Southwest Airlines, Houston Hobby Airport, Houston, Texas. HETA-93-0816-2371. Cincinnati, OH: NIOSH.

DeHart RL. 1992. Aerospace medicine. In Public Health and Preventive Medicine, 13th edition, edited by ML Last and RB Wallace. Norwalk, CT: Appleton and Lange.

DeHart, RL and KN Beers. 1985. Aircraft accidents, survival, and rescue. In Fundamentals of Aerospace Medicine, edited by RL DeHart. Philadelphia, PA: Lea and Febiger.

Eisenhardt, D and E Olmsted. 1996. Investigation of Jet Exhaust Infiltration into a Building Located on John F. Kennedy (JFK) Airport Taxiway. New York: US Department of Health and Human Services, Public Health Service, Division of Federal Occupational Health, New York Field Office.

Firth, R. 1995. Steps to successfully installing a warehouse management system. Industrial Engineering 27(2):34–36.

Friedberg, W, L Snyder, DN Faulkner, EB Darden, Jr., and K O’Brien. 1992. Radiation Exposure of Air Carrier Crewmembers II. DOT/FAA/AM-92-2.19. Oklahoma City, OK: Civil Aeromedical Institute; Washington, DC: Federal Aviation Administration.

Gentry, JJ, J Semeijn, and DB Vellenga. 1995. The future of road haulage in the new European Union—1995 and beyond. Logistics and Transportation Review 31(2):149.

Giesser-Weigt, M and G Schmidt. 1989. Verbesserung des Arbeitssituation von Fahrern im öffentlichen Personennahverkehr. Bremerhaven: Wirtschaftsverlag NW.

Glaister, DH. 1988a. The effects of long duration acceleration. In Aviation Medicine, 2nd edition, edited by J Ernsting and PF King. London: Butterworth.

—. 1988b. Protection against long duration acceleration. In Aviation Medicine, 2nd edition, edited by J Ernsting and PF King. London: Butterworth.

Haas, J, H Petry and W Schühlein. 1989. Untersuchung zurVerringerung berufsbedingter Gesundheitsrisien im Fahrdienst des öffentlichen Personennahverkehr. Bremerhaven; Wirtschaftsverlag NW.

International Chamber of Shipping. 1978. International Safety Guide for Oil Tankers and Terminals. London: Witherby.

International Labour Organization (ILO). 1992. Recent Developments in Inland Transportation. Report I, Sectoral Activities Programme, Twelfth Session. Geneva: ILO.

—. 1996. Accident Prevention on Board Ship at Sea and in Port. An ILO Code of Practice. 2nd edition. Geneva: ILO.

Joyner, KH and MJ Bangay. 1986. Exposure survey of civilian airport radar workers in Australia. Journal of Microwave Power and Electromagnetic Energy 21(4):209–219.

Landsbergis, PA, D Stein, D Iacopelli and J Fruscella. 1994. Work environment survey of air traffic controllers and development of an occupational safety and health training program. Presented at the American Public Health Association, 1 November, Washington, DC.

Leverett, SD and JE Whinnery. 1985. Biodynamics: Sustained acceleration. In Fundamentals of Aerospace Medicine, edited by RL DeHart. Philadelphia, PA: Lea and Febiger.

Magnier, M. 1996. Experts: Japan has the structure but not the will for intermodalism. Journal of Commerce and Commercial 407:15.

Martin, RL. 1987. AS/RS: From the warehouse to the factory floor. Manufacturing Engineering 99:49–56.

Meifort, J, H Reiners, and J Schuh. 1983. Arbeitshedingungen von Linienbus- und Strassenbahnfahrern des Dortmunder Staatwerke Aktiengesellschaft. Bremen- haven: Wirtschaftsverlag.

Miyamoto, Y. 1986. Eye and respiratory irritants in jet engine exhaust. Aviation, Space and Environmental Medicine 57(11):1104–1108.

National Fire Protection Association (NFPA). 1976. Fire Protection Handbook, 14th edition. Quincy, MA: NFPA.

National Institute for Occupational Safety and Health (NIOSH). 1976. Documented Personnel Exposures from Airport Baggage Inspection Systems. DHHS (NIOSH) Publication 77-105. Cincinnati, OH: NIOSH.

—. 1993a. Health Hazard Evaluation: Big Bear Grocery Warehouse. HETA 91-405-2340. Cincinnati, OH: NIOSH.

—. 1993b. Alert: Preventing Homicide in the Workplace. DHHS (NIOSH) Publication 93-108. Cincinatti, OH: NIOSH.

—. 1995. Health Hazard Evaluation: Kroger Grocery Warehouse. HETA 93-0920-2548. Cincinnati, OH: NIOSH.

National Safety Council. 1988. Aviation Ground Operation Safety Handbook, 4th edition. Chicago, IL: National Safety Council.

Nicogossian, AE, CL Huntoon and SL Pool (eds.). 1994. Space Physiology and Medicine, 3rd edition. Philadelphia, PA: Lea and Febiger.

Peters, Gustavsson, Morén, Nilsson and Wenäll. 1992. Forarplats I Buss, Etapp 3; Kravspecifikation. Linköping, Sweden: Väg och Trafikinstitutet.

Poitrast, BJ and deTreville. 1994. Occupational medical considerations in the aviation industry. In Occupational Medicine, 3rd edition, edited by C Zenz, OB Dickerson, and EP Hovarth. St. Louis, MO: Mosby.

Register, O. 1994. Make Auto-ID work in your world. Transportation and Distribution 35(10):102–112.

Reimann, J. 1981. Beanspruchung von Linienbusfahrern. Untersuchungen zur Beanspruchung von Linienbusfahrern im innerstädtischen Verkehr. Bremerhaven: Wirtschafts-verlag NW.

Rogers, JW. 1980. Results of FAA Cabin Ozone Monitoring Program in Commercial Aircraft in 1978 and 1979. FAA-EE-80-10. Washington, DC: Federal Aviation Administration, Office of Environment and Energy.

Rose, RM, CD Jenkins, and MW Hurst. 1978. Air Traffic Controller Health Change Study. Boston, MA: Boston University School of Medicine.

Sampson, RJ, MT Farris, and DL Shrock. 1990. Domestic Transportation: Practice, Theory, and Policy, 6th edition. Boston, MA: Houghton Mifflin Company.

Streekvervoer Nederland. 1991. Chaufferscabine [Driver’s cabin]. Amsterdam, Netherlands: Streekvervoer Nederland.

US Senate. 1970. Air Traffic Controllers (Corson Report). Senate Report 91-1012. 91st Congress, 2nd Session, 9 July. Washington, DC: GPO.

US Department of Transportation (DOT). 1995. Senate Report 103–310, June 1995. Washington, DC: GPO.

Verband Deutscher Verkehrsunternehmen. 1996. Fahrerarbeitsplatz im Linienbus [Driver’s workstation in buses]. VDV Schrift 234 (Entwurf). Cologne, Germany: Verband Deutscher Verkehrsunternehmen.

Violland, M. 1996. Whither railways? OECD Observer No. 198, 33.

Wallentowitz H, M Marx, F Luczak, J Scherff. 1996. Forschungsprojekt. Fahrerarbeitsplatz im Linienbus— Abschlußbericht [Research project. Driver’s workstation in buses—Final report]. Aachen, Germany: RWTH.

Wu, YX, XL Liu, BG Wang, and XY Wang. 1989. Aircraft noise-induced temporary threshold shift. Aviation Space and Medicine 60(3):268–270.