Tuesday, 08 March 2011 20:55

Anthropometry

Rate this item
(2 votes)

 

This article is adapted from the 3rd edition of the Encyclopaedia of Occupational Health and Safety.

Anthropometry is a fundamental branch of physical anthropology. It represents the quantitative aspect. A wide system of theories and practice is devoted to defining methods and variables to relate the aims in the different fields of application. In the fields of occupational health, safety and ergonomics anthropometric systems are mainly concerned with body build, composition and constitution, and with the dimensions of the human body’s interrelation to workplace dimensions, machines, the industrial environment, and clothing.

Anthropometric variables

An anthropometric variable is a measurable characteristic of the body that can be defined, standardized and referred to a unit of measurement. Linear variables are generally defined by landmarks that can be precisely traced to the body. Landmarks are generally of two types: skeletal-anatomical, which may be found and traced by feeling bony prominences through the skin, and virtual landmarks that are simply found as maximum or minimum distances using the branches of a caliper.

Anthropometric variables have both genetic and environmental components and may be used to define individual and population variability. The choice of variables must be related to the specific research purpose and standardized with other research in the same field, as the number of variables described in the literature is extremely large, up to 2,200 having been described for the human body.

Anthropometric variables are mainly linear measures, such as heights, distances from landmarks with subject standing or seated in standardized posture; diameters, such as distances between bilateral landmarks; lengths, such as distances between two different landmarks; curved measures, namely arcs, such as distances on the body surface between two landmarks; and girths, such as closed all-around measures on body surfaces, generally positioned at at least one landmark or at a defined height.

Other variables may require special methods and instruments. For instance skinfold thickness is measured by means of special constant pressure calipers. Volumes are measured by calculation or by immersion in water. To obtain full information on body surface characteristics, a computer matrix of surface points may be plotted using biostereometric techniques.

Instruments

Although sophisticated anthropometric instruments have been described and used with a view to automated data collection, basic anthropometric instruments are quite simple and easy to use. Much care must be taken to avoid common errors resulting from misinterpretation of landmarks and incorrect postures of subjects.

The standard anthropometric instrument is the anthropometer—a rigid rod 2 metres long, with two counter-reading scales, with which vertical body dimensions, such as heights of landmarks from floor or seat, and transverse dimensions, such as diameters, can be taken.

Commonly the rod can be split into 3 or 4 sections which fit into one another. A sliding branch with a straight or curved claw makes it possible to measure distances from the floor for heights, or from a fixed branch for diameters. More elaborate anthropometers have a single scale for heights and diameters to avoid scale errors, or are fitted with digital mechanical or electronic reading devices (figure 1).

Figure 1. An anthropometer

ERG070F1

A stadiometer is a fixed anthropometer, generally used only for stature and frequently associated with a weight beam scale.

For transverse diameters a series of calipers may be used: the pelvimeter for measures up to 600 mm and the cephalometer up to 300 mm. The latter is particularly suitable for head measurements when used together with a sliding compass (figure 2).

Figure 2. A cephalometer together with a sliding compass

ERG070F2

The foot-board is used for measuring the feet and the head-board provides cartesian co-ordinates of the head when oriented in the “Frankfort plane” (a horizontal plane passing through porion and orbitale landmarks of the head).The hand may be measured with a caliper, or with a special device composed of five sliding rulers.

Skinfold thickness is measured with a constant-pressure skinfold caliper generally with a pressure of 9.81 x 104 Pa (the pressure imposed by a weight of 10 g on an area of 1 mm2).

For arcs and girths a narrow, flexible steel tape with flat section is used. Self-straightening steel tapes must be avoided.

Systems of variables

A system of anthropometric variables is a coherent set of body measurements to solve some specific problems.

In the field of ergonomics and safety, the main problem is fitting equipment and workspace to humans and tailoring clothes to the right size.

Equipment and workspace require mainly linear measures of limbs and body segments that can easily be calculated from landmark heights and diameters, whereas tailoring sizes are based mainly on arcs, girths and flexible tape lengths. Both systems may be combined according to need.

In any case, it is absolutely necessary to have a precise space reference for each measurement. The landmarks must, therefore, be linked by heights and diameters and every arc or girth must have a defined landmark reference. Heights and slopes must be indicated.

In a particular survey, the number of variables has to be limited to the minimum so as to avoid undue stress on the subject and operator.

A basic set of variables for workspace has been reduced to 33 measured variables (figure 3) plus 20 derived by a simple calculation. For a general-purpose military survey, Hertzberg and co-workers use 146 variables. For clothes and general biological purposes the Italian Fashion Board (Ente Italiano della Moda) uses a set of 32 general purpose variables and 28 technical ones. The German norm (DIN 61 516) of control body dimensions for clothes includes 12 variables. The recommendation of the International Organization for Standardization (ISO) for anthropometry includes a core list of 36 variables (see table 1). The International Data on Anthropometry tables published by the ILO list 19 body dimensions for the populations of 20 different regions of the world (Jürgens, Aune and Pieper 1990).

Figure 3. Basic set of anthropometric variables

ERG070F3


Table 1. Basic anthropometric core list

 

1.1            Forward reach (to hand grip with subject standing upright against a wall)

1.2            Stature (vertical distance from floor to head vertex)

1.3            Eye height (from floor to inner eye corner)

1.4            Shoulder height (from floor to acromion)

1.5            Elbow height (from floor to radial depression of elbow)

1.6            Crotch height (from floor to pubic bone)

1.7            Finger tip height (from floor to grip axis of fist)

1.8            Shoulder breadth (biacromial diameter)

1.9            Hip breadth, standing (the maximum distance across hips)

2.1            Sitting height (from seat to head vertex)

2.2            Eye height, sitting (from seat to inner corner of the eye)

2.3            Shoulder height, sitting (from seat to acromion)

2.4            Elbow height, sitting (from seat to lowest point of bent elbow)

2.5            Knee height (from foot-rest to the upper surface of thigh)

2.6            Lower leg length (height of sitting surface)

2.7            Forearm-hand length (from back of bent elbow to grip axis)

2.8            Body depth, sitting (seat depth)

2.9            Buttock-knee length (from knee-cap to rearmost point of buttock)

2.10            Elbow to elbow breadth (distance between lateral surface of the elbows)

2.11            Hip breadth, sitting (seat breadth)

3.1            Index finger breadth, proximal (at the joint between medial and proximal phalanges)

3.2            Index finger breadth, distal (at the joint between distal and medial phalanges)

3.3            Index finger length

3.4            Hand length (from tip of middle finger to styloid)

3.5            Handbreadth (at metacarpals)

3.6            Wrist circumference

4.1            Foot breadth

4.2            Foot length

5.1            Heat circumference (at glabella)

5.2            Sagittal arc (from glabella to inion)

5.3            Head length (from glabella to opisthocranion)

5.4            Head breadth (maximum above the ear)

5.5            Bitragion arc (over the head between the ears)

6.1            Waist circumference (at the umbilicus)

6.2            Tibial height (from the floor to the highest point on the antero-medial margin of the glenoid of the tibia)

6.3            Cervical height sitting (to the tip of the spinous process of the 7th cervical vertebra).

Source: Adapted from ISO/DP 7250 1980).


 

 Precision and errors

The precision of living body dimensions must be considered in a stochastic manner because the human body is highly unpredictable, both as a static and as a dynamic structure.

A single individual may grow or change in muscularity and fatness; undergo skeletal changes as a consequence of aging, disease or accidents; or modify behavior or posture. Different subjects differ by proportions, not only by general dimensions. Tall stature subjects are not mere enlargements of short ones; constitutional types and somatotypes probably vary more than general dimensions.

The use of mannequins, particularly those representing the standard 5th, 50th and 95th percentiles for fitting trials may be highly misleading, if body variations in body proportions are not taken into consideration.

Errors result from misinterpretation of landmarks and incorrect use of instruments (personal error), imprecise or inexact instruments (instrumental error), or changes in subject posture (subject error—this latter may be due to difficulties of communication if the cultural or linguistic background of the subject differs from that of the operator).

Statistical treatment

Anthropometric data must be treated by statistical procedures, mainly in the field of inference methods applying univariate (mean, mode, percentiles, histograms, variance analysis, etc.), bivariate (correlation, regression) and multivariate (multiple correlation and regression, factor analysis, etc.) methods. Various graphical methods based on statistical applications have been devised to classify human types (anthropometrograms, morphosomatograms).

Sampling and survey

As anthropometric data cannot be collected for the whole population (except in the rare case of a particularly small population), sampling is generally necessary. A basically random sample should be the starting point of any anthropometric survey. To keep the number of measured subjects to a reasonable level it is generally necessary to have recourse to multiple-stage stratified sampling. This allows the most homogeneous subdivision of the population into a number of classes or strata.

The population may be subdivided by sex, age group, geographical area, social variables, physical activity and so on.

Survey forms have to be designed keeping in mind both measuring procedure and data treatment. An accurate ergonomic study of the measuring procedure should be made in order to reduce the operator’s fatigue and possible errors. For this reason, variables must be grouped according to the instrument used and ordered in sequence so as to reduce the number of body flexions the operator has to make.

To reduce the effect of personal error, the survey should be carried out by one operator. If more than one operator has to be used, training is necessary to assure the replicability of measurements.

Population anthropometrics

Disregarding the highly criticized concept of “race”, human populations are nevertheless highly variable in size of individuals and in size distribution. Generally human populations are not strictly Mendelian; they are commonly the result of admixture. Sometimes two or more populations, with different origins and adaptation, live together in the same area without interbreeding. This complicates the theoretical distribution of traits. From the anthropometric viewpoint, sexes are different populations. Populations of employees may not correspond exactly to the biological population of the same area as a consequence of possible aptitudinal selection or auto-selection due to job choice.

Populations from different areas may differ as a consequence of different adaptation conditions or biological and genetic structures.

When close fitting is important a survey on a random sample is necessary.

Fitting trials and regulation

The adaptation of workspace or equipment to the user may depend not only on the bodily dimensions, but also on such variables as tolerance of discomfort and nature of activities, clothing, tools and environmental conditions. A combination of a checklist of relevant factors, a simulator and a series of fitting trials using a sample of subjects chosen to represent the range of body sizes of the expected user population can be used.

The aim is to find tolerance ranges for all subjects. If the ranges overlap it is possible to select a narrower final range that is not outside the tolerance limits of any subject. If there is no overlap it will be necessary to make the structure adjustable or to provide it in different sizes. If more than two dimensions are adjustable a subject may not be able to decide which of the possible adjustments will fit him best.

Adjustability can be a complicated matter, especially when uncomfortable postures result in fatigue. Precise indications must, therefore, be given to the user who frequently knows little or nothing about his own anthropometric characteristics. In general, an accurate design should reduce the need for adjustment to the minimum. In any case, it should constantly be kept in mind what is involved is anthropometrics, not merely engineering.

Dynamic anthropometrics

Static anthropometrics may give wide information about movement if an adequate set of variables has been chosen. Nevertheless, when movements are complicated and a close fit with the industrial environment is desirable, as in most user-machine and human-vehicle interfaces, an exact survey of postures and movements is necessary. This may be done with suitable mock-ups that allow tracing of reach lines or by photography. In this case, a camera fitted with a telephoto lens and an anthropometric rod, placed in the sagittal plane of the subject, allows standardized photographs with little distortion of the image. Small labels on subjects’ articulations make the exact tracing of movements possible.

Another way of studying movements is to formalize postural changes according to a series of horizontal and vertical planes passing through the articulations. Again, using computerized human models with computer-aided design (CAD) systems is a feasible way to include dynamic anthropometrics in ergonomic workplace design.

 

Back

Read 18665 times Last modified on Friday, 15 November 2019 16:42
More in this category: Muscular Work »

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Ergonomics References

Abeysekera, JDA, H Shahnavaz, and LJ Chapman. 1990. Ergonomics in developing countries. In Advances in Industrial Ergonomics and Safety, edited by B Das. London: Taylor & Francis.

Ahonen, M, M Launis, and T Kuorinka. 1989. Ergonomic Workplace Analysis. Helsinki: Finnish Institute of Occupational Health.

Alvares, C. 1980. Homo Faber: Technology and Culture in India, China and the West from 1500 to Present Day. The Hague: Martinus Nijhoff.

Amalberti, R. 1991. Savoir-faire de l’opérateur: aspects théoriques et pratiques en ergonomie. In Modèle en analyse du travail, edited by R Amalberti, M de Montmollin, and J Thereau. Liège: Mardaga.

Amalberti, R, M Bataille, G Deblon, A Guengant, JM Paquay, C Valot, and JP Menu. 1989. Développement d’aides intelligentes au pilotage: Formalisation psychologique et informatique d’un modèle de comportement du pologage de combat engagé en mission de pènètration. Paris: Rapport CERMA.

Åstrand, I. 1960. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand 49 Suppl. 169:1-92.

Bainbridge, L. 1981. Le contrôleur de processus. B Psychol XXXIV:813-832.

—. 1986. Asking questions and accessing knowledge. Future Comput Sys 1:143-149.

Baitsch, C. 1985. Kompetenzentwicklung und partizipative Arbeitsgestaltung. Bern: Huber.

Banks, MH and RL Miller. 1984. Reliability and convergent validity of the job component inventory. J Occup Psychol 57:181-184.

Baranson, J. 1969. Industrial Technology for Developing Economies. New York: Praeger.

Bartenwerfer, H. 1970. Psychische Beanspruchung und Erdmüdung. In Handbuch der Psychologie, edited by A Mayer and B Herwig. Göttingen: Hogrefe.

Bartlem, CS and E Locke. 1981. The Coch and French study: A critique and reinterpretation. Hum Relat 34:555-566.

Blumberg, M. 1988. Towards a new theory of job design. In Ergonomics of Hybrid Automated Systems, edited by W Karwowski, HR Parsaei, and MR Wilhelm. Amsterdam: Elsevier.

Bourdon, F and A Weill Fassina. 1994. Réseau et processus de coopération dans la gestion du trafic ferroviaire. Travail Hum. Numéro spécial consacré au travail collectif.

Brehmer, B. 1990. Towards a taxonomy for microworlds. In Taxonomy for an Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Brown DA and R Mitchell. 1986. The Pocket Ergonomist. Sydney: Group Occupational Health Centre.

Bruder. 1993. Entwicklung eines wissensbusierten Systems zur belastungsanalytisch unterscheidbaren Erholungszeit. Düsseldorf: VDI-Verlag.

Caverni, JP. 1988. La verbalisation comme source d’observables pour l’étude du fonctionnnement cognitif. In Psychologie cognitive: Modèles et méthodes, edited by JP
Caverni, C Bastien, P Mendelson, and G Tiberghien. Grenoble: Presses Univ. de Grenoble.

Campion, MA. 1988. Interdisciplinary approaches to job design: A constructive replication with extensions. J Appl Psychol 73:467-481.

Campion, MA and PW Thayer. 1985. Development and field evaluation of an inter-disciplinary measure of job design. J Appl Psychol 70:29-43.

Carter, RC and RJ Biersner. 1987. Job requirements derived from the Position Analysis Questionnaire and validity using military aptitude test scores. J Occup Psychol 60:311-321.

Chaffin, DB. 1969. A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2:429-441.

Chaffin, DB and G Andersson. 1984. Occupational Biomechanics. New York: Wiley.

Chapanis, A. 1975. Ethnic Variables in Human Factors Engineering. Baltimore: Johns Hopkins University.

Coch, L and JRP French. 1948. Overcoming resistance to change. Hum Relat 1:512-532.

Corlett, EN and RP Bishop. 1976. A technique for assessing postural discomfort. Ergonomics 19:175-182.

Corlett, N. 1988. The investigation and evaluation of work and workplaces. Ergonomics 31:727-734.

Costa, G, G Cesana, K Kogi, and A Wedderburn. 1990. Shiftwork: health, sleep and performance. Frankfurt: Peter Lang.

Cotton, JL, DA Vollrath, KL Froggatt, ML Lengnick-Hall, and KR Jennings. 1988. Employee participation: Diverse forms and different outcomes. Acad Manage Rev 13:8-22.

Cushman, WH and DJ Rosenberg. 1991. Human Factors in Product Design. Amsterdam: Elsevier.

Dachler, HP and B Wilpert. 1978. Conceptual dimensions and boundaries of participation in organizations: A critical evaluation. Adm Sci Q 23:1-39.

Daftuar, CN. 1975. The role of human factors in underdeveloped countries, with special reference to India. In Ethnic Variable in Human Factor Engineering, edited by Chapanis. Baltimore: Johns Hopkins University.

Das, B and RM Grady. 1983a. Industrial workplace layout design. An application of engineering anthropometry. Ergonomics 26:433-447.

—. 1983b. The normal working area in the horizontal plane. A comparative study between Farley’s and Squire’s concepts. Ergonomics 26:449-459.

Deci, EL. 1975. Intrinsic Motivation. New York: Plenum Press.

Decortis, F and PC Cacciabue. 1990. Modèlisation cognitive et analyse de l’activité. In Modèles et pratiques de l’analyse du travail, edited by R Amalberti, M Montmollin, and J Theureau. Brussels: Mardaga.

DeGreve, TB and MM Ayoub. 1987. A workplace design expert system. Int J Ind Erg 2:37-48.

De Keyser, V. 1986. De l’évolution des métiers. In Traité de psychologie du travail, edited by C Levy- Leboyer and JC Sperandio. Paris: Presses Universitaires de France.

—. 1992. Man within the Production Line. Proceedings of the Fourth Brite-EuRam Conference, 25-27 May, Séville, Spain. Brussels: EEC.

De Keyser, V and A Housiaux. 1989. The Nature of Human Expertise. Rapport Intermédiaire Politique Scientifique. Liège: Université de Liège.

De Keyser, V and AS Nyssen. 1993. Les erreurs humaines en anesthésie. Travail Hum 56:243-266.

De Lisi, PS. 1990. Lesson from the steel axe: Culture, technology and organizational change. Sloan Manage Rev 32:83-93.

Dillon, A. 1992. Reading from paper versus screen: A critical review of the empirical literature. Ergonomics 35:1297-1326.

Dinges, DF. 1992. Probing the limits of functional capacity: The effects of sleep loss on short-duration tasks. In Sleep, Arousal, and Performance, edited by RJ Broughton and RD Ogilvie. Boston: Birkhäuser.

Drury, CG. 1987. A biomechanical evaluation of the repetitive motion injury potential of industrial jobs. Sem Occup Med 2:41-49.

Edholm, OG. 1966. The assessment of habitual activity. In Physical Activity in Health and Disease, edited by K Evang and K Lange-Andersen. Oslo: Universitetterlaget.

Eilers, K, F Nachreiner, and K Hänicke. 1986. Entwicklung und Überprüfung einer Skala zur Erfassung subjektiv erlebter Anstrengung. Zeitschrift für Arbeitswissenschaft 40:215-224.

Elias, R. 1978. A medicobiological approach to workload. Note No. 1118-9178 in Cahiers De Notes Documentaires—Sécurité Et Hygiène Du Travail. Paris: INRS.

Elzinga, A and A Jamison. 1981. Cultural Components in the Scientific Attitude to Nature: Eastern and Western Mode. Discussion paper No. 146. Lund: Univ. of Lund, Research Policy Institute.

Emery, FE. 1959. Characteristics of Socio-Technical Systems. Document No. 527. London: Tavistock.

Empson, J. 1993. Sleep and Dreaming. New York: Harvester Wheatsheaf.

Ericson, KA and HA Simon. 1984. Protocol Analysis: Verbal Reports As Data. Cambridge, Mass.: MIT Press.

European Committee for Standardization (CEN). 1990. Ergonomic Principles of the Design of Work Systems. EEC Council Directive 90/269/EEC, The Minimum Health and Safety Requirements for the Manual Handling of Loads. Brussels: CEN.

—. 1991. CEN Catalogue 1991: Catalogue of European Standards. Brussels: CEN.

—. 1994. Safety of Machinery: Ergonomic Design Principles. Part 1: Terminology and General Principles. Brussels: CEN.

Fadier, E. 1990. Fiabilité humaine: méthodes d’analyse et domaines d’application. In Les facteurs humains de la fiabilité dans les systèmes complexes, edited by J Leplat and G De Terssac. Marseilles: Octares.

Falzon, P. 1991. Cooperative dialogues. In Distributed Decision Making. Cognitive Models for Cooperative Works, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Faverge, JM. 1972. L’analyse du travail. In Traité de psychologie appliqueé, edited by M Reuchlin. Paris: Presses Universitaires de France.

Fisher, S. 1986. Stress and Strategy. London: Erlbaum.

Flanagan, JL. 1954. The critical incident technique. Psychol Bull 51:327-358.

Fleishman, EA and MK Quaintance. 1984. Toxonomies of Human Performance: The Description of Human Tasks. New York: Academic Press.

Flügel, B, H Greil, and K Sommer. 1986. Anthropologischer Atlas. Grundlagen und Daten. Deutsche Demokratische Republik. Berlin: Verlag tribüne.

Folkard, S and T Akerstedt. 1992. A three-process model of the regulation of alertness sleepiness. In Sleep, Arousal and Performance, edited by RJ Broughton and BD Ogilvie. Boston: Birkhäuser.

Folkard, S and TH Monk. 1985.  Hours of work: Temporal factors in work scheduling . Chichester: Wiley.

Folkard, S, TH Monk, and MC Lobban. 1978. Short and long-term adjustment of circadian rhythms in “permanent” night nurses. Ergonomics 21:785-799.

Folkard, S, P Totterdell, D Minors and J Waterhouse. 1993. Dissecting circadian performance rhythms: Implications for shiftwork.  Ergonomics  36(1-3):283-88.

Fröberg, JE. 1985. Sleep deprivation and prolonged working hours. In Hours of Work: Temporal Factors in Work Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

Fuglesang, A. 1982. About Understanding Ideas and Observations on Cross-Cultural
Communication. Uppsala: Dag Hammarskjöld Foundation.

Geertz, C. 1973. The Interpretation of Cultures. New York: Basic Books.

Gilad, I. 1993. Methodology for functional ergonomic evaluation of repetitive operations. In Advances in Industrial Egonomics and Safety, edited by Nielsen and Jorgensen. London: Taylor & Francis.

Gilad, I and E Messer. 1992. Biomechanics considerations and ergonomic design in diamond polishing. In Advances in Industrial Ergonomics and Safety, edited by Kumar. London: Taylor & Francis.

Glenn, ES and CG Glenn. 1981. Man and Mankind: Conflict and Communication between Cultures. Norwood, NJ: Ablex.

Gopher, D and E Donchin. 1986. Workload—An examination of the concept. In Handbook of Perception and Human Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Gould, JD. 1988. How to design usable systems. In Handbook of Human Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Gould, JD and C Lewis. 1985. Designing for usability: Key principles and what designers think. Commun ACM 28:300-311.

Gould, JD, SJ Boies, S Levy, JT Richards, and J Schoonard. 1987. The 1984 Olympic message system: A test of behavioral principles of the design. Commun ACM 30:758-769.

Gowler, D and K Legge. 1978. Participation in context: Towards a synthesis of the theory and practice of organizational change, part I. J Manage Stud 16:150-175.

Grady, JK and J de Vries. 1994. RAM: The Rehabilitation Technology Acceptance Model as a Base for an Integral Product Evaluation. Instituut voor Research, Ontwikkeling en Nascholing in de Gezondheidszorg (IRON) and University Twente, Department of Biomedical Engineering.

Grandjean, E. 1988. Fitting the Task to the Man. London: Taylor & Francis.

Grant, S and T Mayes. 1991. Cognitive task analysis? In Human-Computer Interactionand Complex Systems, edited by GS Weir and J Alty. London: Academic Press.

Greenbaum, J and M Kyng. 1991. Design At Work: Cooperative Design of Computer Systems. Hillsdale, NJ: Lawrence Erlbaum.

Greuter, MA and JA Algera. 1989. Criterion development and job analysis. In Assessment and Selection in Organizations, edited by P Herlot. Chichester: Wiley.

Grote, G. 1994. A participatory approach to the complementary design of highly automated work systems. In Human Factors in Organizational Design and Management, edited by G Bradley and HW Hendrick. Amsterdam: Elsevier.

Guelaud, F, M-N Beauchesne, J Gautrat, and G Roustang. 1977. Pour une analyse des conditions du travail ouvrier dans l’entreprise. Paris: A. Colin.

Guillerm, R, E Radziszewski, and A Reinberg. 1975. Circadian rhythms of six healthy young men over a 4-week period with night-work every 48 h and a 2 per cent Co2 atmosphere. In Experimental Studies of Shiftwork, edited by P Colquhoun, S Folkard, P Knauth, and J Rutenfranz. Opladen: Westdeutscher Werlag.

Hacker, W. 1986. Arbeitspsychologie. In Schriften zur Arbeitpsychologie, edited by E Ulich. Bern: Huber.

Hacker, W and P Richter. 1994. Psychische Fehlbeanspruchung. Ermüdung, Monotonie, Sättigung, Stress. Heidelberg: Springer.

Hackman, JR and GR Oldham. 1975. Development of the job diagnostic survey. J Appl Psychol 60:159-170.

Hancock, PA and MH Chignell. 1986. Toward a Theory of Mental Work Load: Stress and Adaptability in Human-Machine Systems. Proceedings of the IEEE International Conference On Systems, Man, and Cybernetics. New York: IEEE Society.

Hancock, PA and N Meshkati. 1988. Human Mental Workload. Amsterdam: North Holland.

Hanna, A (ed.). 1990. Annual Design Review ID. 37 (4).

Härmä, M. 1993. Individual differences in tolerance to shiftwork: a review.  Ergonomics  36:101-109.

Hart, S and LE Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Human Mental Work Load, edited by PA Hancock and N Meshkati. Amsterdam: North Holland.

Hirschheim, R and HK Klein. 1989. Four paradigms of information systems development. Commun ACM 32:1199-1216.

Hoc, JM. 1989. Cognitive approaches to process control. In Advances in Cognitive Science, edited by G Tiberghein. Chichester: Horwood.

Hofstede, G. 1980. Culture’s Consequences: International Differences in Work-Related Values. Beverly Hills, Calif.: Sage Univ. Press.

—. 1983. The cultural relativity of organizational practices and theories. J Int Stud :75-89.

Hornby, P and C Clegg. 1992. User participation in context: A case study in a UK bank. Behav Inf Technol 11:293-307.

Hosni, DE. 1988. The transfer of microelectronics technology to the third world. Tech Manage Pub TM 1:391-3997.

Hsu, S-H and Y Peng. 1993. Control/display relationship of the four-burner stove: A reexamination. Hum Factors 35:745-749.

International Labour Organization (ILO). 1990.The hours we work: new work schedules in policy and practice. Cond Wor Dig 9.

International Organization for Standardization (ISO). 1980. Draft Proposal for Core List of Anthropometric Measurements ISO/TC 159/SC 3 N 28 DP 7250. Geneva: ISO.

—. 1996. ISO/DIS 7250 Basic Human Body Measurements for Technological Design. Geneva: ISO.
Japan Industrial Design Promotion Organization (JIDPO). 1990. Good Design Products 1989. Tokyo: JIDPO.

Jastrzebowski, W. 1857. Rys ergonomiji czyli Nauki o Pracy, opartej naprawdach poczerpnietych z Nauki Przyrody. Przyoda i Przemysl 29:227-231.

Jeanneret, PR. 1980. Equitable job evaluation and classification with the Position Analysis Questionnaire. Compens Rev 1:32-42.

Jürgens, HW, IA Aune, and U Pieper. 1990. International data on anthropometry. Occupational Safety and Health Series. Geneva: ILO.

Kadefors, R. 1993. A model for assessment and design of workplaces for manual welding. In The Ergonomics of Manual Work, edited by WS Marras, W Karwowski, and L Pacholski. London: Taylor & Francis.

Kahneman, D. 1973. Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.

Karhu, O, P Kansi, and I Kuorinka. 1977. Correcting working postures in industry: A practical method for analysis. Appl Ergon 8:199-201.

Karhu, O, R Harkonen, P Sorvali, and P Vepsalainen. 1981. Observing working postures in industry: Examples of OWAS application. Appl Ergon 12:13-17.

Kedia, BL and RS Bhagat. 1988. Cultural constraints on transfer of technology across nations: Implications for research in international and comparative management. Acad Manage Rev 13:559-571.

Keesing, RM. 1974. Theories of culture. Annu Rev Anthropol 3:73-79.

Kepenne, P. 1984. La charge de travail dans une unité de soins de médecine. Mémoire. Liège: Université de Liège.

Kerguelen, A. 1986. L’observation systématique en ergonomie: Élaboration d’un logiciel d’aide au recueil et à l’analyse des données. Diploma in Ergonomics Thesis, Conservatoire National des Arts et Métiers, Paris.

Ketchum, L. 1984. Sociotechnical design in a third world country: The railway maintenance depot at Sennar in Sudan. Hum Relat 37:135-154.

Keyserling, WM. 1986. A computer-aided system to evaluate postural stress in the workplace. Am Ind Hyg Assoc J 47:641-649.

Kingsley, PR. 1983. Technological development: Issues, roles and orientation for social psychology. In Social Psychology and Developing Countries, edited by Blacker. New York: Wiley.

Kinney, JS and BM Huey. 1990. Application Principles for Multicolored Displays. Washington, DC: National Academy Press.

Kivi, P and M Mattila. 1991. Analysis and improvement of work postures in building industry: Application of the computerized OWAS method. Appl Ergon 22:43-48.

Knauth, P, W Rohmert and J Rutenfranz. 1979. Systemic selection of shift plans for continuous production with the aid of work-physiological criteria. Appl Ergon 10(1):9-15.

Knauth, P. and J Rutenfranz. 1981. Duration of sleep related to the type of shift work, in  Night and shiftwork: biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford Pergamon Press.

Kogi, K. 1982. Sleep problems in night and shift work. II. Shiftwork: Its practice and improvement . J Hum Ergol:217-231.

—. 1981. Comparison of resting conditions between various shift rotation systems for industrial workers, in  Night and shift work. Biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford: Pergamon.

—. 1985. Introduction to the problems of shiftwork. In Hours of Work: Temporal Factors in Work-Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

—. 1991. Job content and working time: The scope for joint change. Ergonomics 34:757-773.

Kogi, K and JE Thurman. 1993. Trends in approaches to night and shiftwork and new international standards. Ergonomics 36:3-13.

Köhler, C, M von Behr, H Hirsch-Kreinsen, B Lutz, C Nuber, and R Schultz-Wild. 1989. Alternativen der Gestaltung von Arbeits- und Personalstrukturen bei rechnerintegrierter Fertigung. In Strategische Optionen der Organisations- und Personalentwicklung bei CIM Forschungsbericht KfK-PFT 148, edited by Institut für Sozialwissenschaftliche Forschung. Karlsruhe: Projektträgerschaft Fertigungstechnik.

Koller, M. 1983. Health risks related to shift work. An example of time-contingent effects of long-term stress. Int Arch Occ Env Health 53:59-75.

Konz, S. 1990. Workstation organization and design. Ergonomics 32:795-811.

Kroeber, AL and C Kluckhohn. 1952. Culture, a critical review of concepts and definitions. In Papers of the Peabody Museum. Boston: Harvard Univ.

Kroemer, KHE. 1993. Operation of ternary chorded keys. Int J Hum Comput Interact 5:267-288.

—. 1994a. Locating the computer screen: How high, how far? Ergonomics in Design (January):40.

—. 1994b. Alternative keyboards. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

—. 1995. Ergonomics. In Fundamentals of Industrial Hygiene, edited by BA Ploog. Chicago: National Safety Council.

Kroemer, KHE, HB Kroemer, and KE Kroemer-Elbert. 1994. Ergonomics: How to Design for Ease and Efficiency. Englewood Cliffs, NJ: Prentice Hall.

Kwon, KS, SY Lee, and BH Ahn. 1993. An approach to fuzzy expert systems for product colour design. In The Ergonomics of Manual Work, edited by Maras, Karwowski, Smith, and Pacholski. London: Taylor & Francis.

Lacoste, M. 1983. Des situations de parole aux activités interprétives. Psychol Franç 28:231-238.

Landau, K and W Rohmert. 1981. AET-A New Job Analysis Method. Detroit, Mich.: AIIE Annual Conference.

Laurig, W. 1970. Elektromyographie als arbeitswissenschaftliche Untersuchungsmethode zur Beurteilung von statischer Muskelarbeit. Berlin: Beuth.

—. 1974. Beurteilung einseitig dynamischer Muskelarbeit. Berlin: Beuth.

—. 1981. Belastung, Beanspruchung und Erholungszeit bei energetisch-muskulärer Arbeit—Literaturexpertise. In Forschungsbericht Nr. 272 der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund. Bremerhaven: Wirtschaftsverlag NW.

—. 1992. Grundzüge der Ergonomie. Erkenntnisse und Prinzipien. Berlin, Köln: Beuth Verlag.

Laurig, W and V Rombach. 1989. Expert systems in ergonomics: Requirements and an approach. Ergonomics 32:795-811.

Leach, ER. 1965. Culture and social cohesion: An anthropologist’s view. In Science and Culture, edited by Holten. Boston: Houghton Mifflin.

Leana, CR, EA Locke, and DM Schweiger. 1990. Fact and fiction in analyzing research on participative decision making: A critique of Cotton, Vollrath, Froggatt, Lengnick-Hall, and Jennings. Acad Manage Rev 15:137-146.

Lewin, K. 1951. Field Theory in Social Science. New York: Harper.

Liker, JK, M Nagamachi, and YR Lifshitz. 1988. A Comparitive Analysis of Participatory Programs in US and Japan Manufacturing Plants. Ann Arbor, Mich.: Univ. of Michigan, Center for Ergonomics, Industrial and Operational Engineering.

Lillrank, B and N Kano. 1989. Continuous Improvement: Quality Control Circles in Japanese Industries. Ann Arbor, Mich.: Univ. of Michigan, Center for Japanese Studies.

Locke, EA and DM Schweiger. 1979. Participation in decision making: One more look. In Research in Organizational Behavior, edited by BM Staw. Greenwich, Conn.: JAI Press.

Louhevaara, V, T Hakola, and H Ollila. 1990. Physical work and strain involved in manual sorting of postal parcels. Ergonomics 33:1115-1130.

Luczak, H. 1982.  Belastung, Beanspruchung und Erholungszeit bei informatorisch- mentaler Arbeit — Literaturexpertise. Forschungsbericht der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund . Bremerhaven: Wirtschaftsverlag NW.

—. 1983. Ermüdung. In Praktische Arbeitsphysiologie, edited by W Rohmert and J Rutenfranz. Stuttgart: Georg Thieme Verlag.

—. 1993. Arbeitswissenschaft. Berlin: Springer Verlag.

Majchrzak, A. 1988. The Human Side of Factory Automation. San Francisco: Jossey-Bass.

Martin, T, J Kivinen, JE Rijnsdorp, MG Rodd, and WB Rouse. 1991. Appropriate automation-integrating technical, human, organization, economic and cultural factors. Automatica 27:901-917.

Matsumoto, K and M Harada. 1994. The effect of night-time naps on recovery from fatigue following night work. Ergonomics 37:899-907.

Matthews, R. 1982. Divergent conditions in the technological development of India and Japan. Lund Letters on Technology and Culture, No. 4. Lund: Univ. of Lund, Research Policy Institute.

McCormick, EJ. 1979. Job Analysis: Methods and Applications. New York: American Management Association.

McIntosh, DJ. 1994. Integration of VDUs into the US office work environment. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

McWhinney. 1990. The Power of Myth in Planning and Organizational Change, 1989 IEEE Technics, Culture and Consequences. Torrence, Calif.: IEEE Los Angeles Council.

Meshkati, N. 1989. An etiological investigation of micro and macroergonomics factors in the Bhopal disaster: Lessons for industries of both industrialized and developing countries. Int J Ind Erg 4:161-175.

Minors, DS and JM Waterhouse. 1981. Anchor sleep as a synchronizer of rhythms on abnormal routines.  Int J Chronobiology : 165-188.

Mital, A and W Karwowski. 1991. Advances in Human Factors/Ergonomics. Amsterdam: Elsevier.

Monk, TH. 1991.  Sleep, Sleepiness and Performance . Chichester: Wiley.

Moray, N, PM Sanderson, and K Vincente. 1989. Cognitive task analysis for a team in a complex work domain: A case study. Proceedings of the Second European Meeting On Cognitive Science Approaches to Process Control, Siena, Italy.

Morgan, CT, A Chapanis, JS III Cork, and MW Lund. 1963. Human Engineering Guide to Equipment Design. New York: McGraw-Hill.

Mossholder, KW and RD Arvey. 1984. Synthetic validity: A conceptual and comparative review. J Appl Psychol 69:322-333.

Mumford, E and Henshall. 1979. A Participative Approach to Computer Systems Design. London: Associated Business Press.

Nagamachi, M. 1992. Pleasantness and Kansei engineering. In Measurement Standards. Taejon, Korea: Korean Research Institute of Standards and Science Publishing.

National Institute for Occupational Safety and Health (NIOSH). 1981. Work Practices Guide for Manual Lifting. Cincinnati, Ohio: US Department of Health and Human Services.

—. 1990. OSHA Instruction CPL 2.85: Directorate of Compliance Programs: Appendix C, Guidelines Auggested By NIOSH for Videotape Evaluation of Work Station for Upper Extremities Cumulative Trauma Disorders. Washington, DC: US Department of Health and Human Services.

Navarro, C. 1990. Functional communication and problem-solving in a bus traffic-regulation task. Psychol Rep 67:403-409.

Negandhi, ART. 1975. Modern Organizational Behaviour. Kent: Kent Univ..

Nisbett, RE and TD De Camp Wilson. 1977. Telling more than we know. Psychol Rev 84:231-259.

Norman, DA. 1993. Things That Make Us Smart. Reading: Addison-Wesley.

Noro, K and AS Imada. 1991. Participatory Ergonomics. London: Taylor & Francis.

O’Donnell, RD and FT Eggemeier. 1986. Work load assessment methodology. In Handbook of Perception and Human Performance. Cognitive Processes and Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Pagels, HR. 1984. Computer culture: The scientific, intellectual and social impact of the computer. Ann NY Acad Sci :426.

Persson, J and Å Kilbom. 1983. VIRA—En Enkel Videofilmteknik För Registrering OchAnalys Av Arbetsställningar Och—Rörelser. Solna, Sweden: Undersökningsrapport,Arbetraskyddsstyrelsen.

Pham, DT and HH Onder. 1992. A knowledge-based system for optimizing workplace layouts using a genetic algorithm. Ergonomics 35:1479-1487.

Pheasant, S. 1986. Bodyspace, Anthropometry, Ergonomics and Design. London: Taylor & Francis.

Poole, CJM. 1993. Seamstress’ finger. Brit J Ind Med 50:668-669.

Putz-Anderson, V. 1988. Cumulative Trauma Disorders. A Manual for Musculoskeletal Diseases of the Upper Limbs. London: Taylor & Francis.

Rasmussen, J. 1983. Skills, rules, and knowledge: Sinds, signs, symbols and other distinctions in human performance models. IEEE T Syst Man Cyb 13:257-266.

—. 1986. A framework for cognitive task analysis in systems design. In Intelligent Decision Support in Process Environments, edited by E Hollnagel, G Mancini, and DD Woods. Berlin: Springer.

Rasmussen, J, A Pejtersen, and K Schmidts. 1990. In Taxonomy for Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Reason, J. 1989. Human Error. Cambridge: CUP.

Rebiffé, R, O Zayana, and C Tarrière. 1969. Détermination des zones optimales pour l’emplacement des commandes manuelles dans l’espace de travail. Ergonomics 12:913-924.

Régie nationale des usines Renault (RNUR). 1976. Les profils de poste: Methode d’analyse des conditions de travail. Paris: Masson-Sirtes.

Rogalski, J. 1991. Distributed decision making in emergency management: Using a method as a framework for analysing cooperative work and as a decision aid. In Distributed Decision Making. Cognitive Models for Cooperative Work, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Rohmert, W. 1962. Untersuchungen über Muskelermüdung und Arbeitsgestaltung. Bern: Beuth-Vertrieb.

—. 1973. Problems in determining rest allowances. Part I: Use of modern methods to evaluate stress and strain in static muscular work. Appl Ergon 4(2):91-95.

—. 1984. Das Belastungs-Beanspruchungs-Konzept. Z Arb wiss 38:193-200.

Rohmert, W and K Landau. 1985. A New Technique of Job Analysis. London: Taylor & Francis.

Rolland, C. 1986. Introduction à la conception des systèmes d’information et panorama des méthodes disponibles. Génie Logiciel 4:6-11.

Roth, EM and DD Woods. 1988. Aiding human performance. I. Cognitive analysis. Travail Hum 51:39-54.

Rudolph, E, E Schönfelder, and W Hacker. 1987. Tätigkeitsbewertungssystem für geistige arbeit mit und ohne Rechnerunterstützung (TBS-GA). Berlin: Psychodiagnostisches Zentrum der Humboldt-Universität.

Rutenfranz, J. 1982. Occupational health measures for night- and shiftworkers. II. Shiftwork: Its practice and improvement. J Hum Ergol:67-86.

Rutenfranz, J, J Ilmarinen, F Klimmer, and H Kylian. 1990. Work load and demanded physical performance capacity under different industrial working conditions. In Fitness for Aged, Disabled, and Industrial Workers, edited by M Kaneko. Champaign, Ill.: Human Kinetics Books.

Rutenfranz, J, P Knauth, and D Angersbach. 1981. Shift work research issues. In  Biological Rhythms, Sleep and Shift Work , edited by LC Johnson, DI Tepas, WP Colquhoun, and MJ Colligan. New York: Spectrum Publications Medical and Scientific Books.

Saito, Y. and K Matsumoto. 1988. Variations of physiological functions and psychological measures and their relationship on delayed shift of sleeping time.  Jap J Ind Health  30:196-205.

Sakai, K, A Watanabe, N Onishi, H Shindo, K Kimotsuki, H Saito, and K Kogl. 1984. Conditions of night naps effective to facilitate recovery from night work fatigue.  J Sci  Lab 60: 451-478.

Savage, CM and D Appleton. 1988. CIM and Fifth Generation Management. Dearborn: CASA/SME Technical Council.

Savoyant, A and J Leplat. 1983. Statut et fonction des communications dans l’activité des équipes de travail. Psychol Franç 28:247-253.

Scarbrough, H and JM Corbett. 1992. Technology and Organization. London: Routledge.

Schmidtke, H. 1965. Die Ermüdung. Bern: Huber.

—. 1971. Untersuchungen über den Erholunggszeitbedarf bei verschiedenen Arten gewerblicher Tätigkeit. Berlin: Beuth-Vertrieb.

Sen, RN. 1984. Application of ergonomics to industrially developing countries. Ergonomics 27:1021-1032.

Sergean, R. 1971. Managing Shiftwork. London: Gower Press.

Sethi, AA, DHJ Caro, and RS Schuler. 1987. Strategic Management of Technostress in an Information Society. Lewiston: Hogrefe.

Shackel, B. 1986. Ergonomics in design for usability. In People and Computer: Design for Usability, edited by MD Harrison and AF Monk. Cambridge: Cambridge Univ. Press.

Shahnavaz, H. 1991. Transfer of Technology to Industrially Developing Countries and Human Factors Consideration TULEÅ 1991: 22, 23024. Luleå Univ., Luleå, Sweden: Center for Ergonomics of Developing Countries.

Shahnavaz, H, J Abeysekera, and A Johansson. 1993. Solving multi-factorial work-environment problems through participatory ergonomics: Case study: VDT operators. In Ergonomics of Manual Work, edited by E Williams, S Marrs, W Karwowski, JL Smith, and L Pacholski. London: Taylor & Francis.

Shaw, JB and JH Riskind. 1983. Predicting job stress using data from the Position Analysis Questionnaire (PAQ). J Appl Psychol 68:253-261.

Shugaar, A. 1990. Ecodesign: New products for a greener culture. Int Herald Trib, 17.

Sinaiko, WH. 1975. Verbal factors in human engineering: Some cultural and psychological data. In Ethnic Variables in Human Factors Engineering, edited by A Chapanis. Baltimore: Johns Hopkins Univ..

Singleton, WT. 1982. The Body At Work. Cambridge: CUP.

Snyder, HL. 1985a. Image quality: Measures and visual performance. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

—. 1985b. The visual system: Capabilities and limitations. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

Solomon, CM. 1989. The corporate response to work force diversity. Pers J 68:42-53.

Sparke, P. 1987. Modern Japanese Design. New York: EP Dutton.

Sperandio, JC. 1972. Charge de travail et régulation des processus opératoires. Travail Hum 35:85-98.

Sperling, L, S Dahlman, L Wikström, A Kilbom, and R Kadefors. 1993. A cube model for the classification of work with hand tools and the formulation of functional requirements. Appl Ergon 34:203-211.

Spinas, P. 1989. User oriented software development and dialogue design. In Work With Computers: Organizational, Management, Stress and Health Aspects, edited by MJ Smith and G Salvendy. Amsterdam: Elsevier.

Staramler, JH. 1993. The Dictionary of Human Factors Ergonomics. Boca Raton: CRC Press.

Strohm, O, JK Kuark, and A Schilling. 1993. Integrierte Produktion: Arbeitspsychologische Konzepte und empirische Befunde, Schriftenreihe Mensch, Technik, Organisation. In CIM—Herausforderung an Mensch, Technik, Organisation, edited by G Cyranek and E Ulich. Stuttgart, Zürich: Verlag der Fachvereine.

Strohm, O, P Troxler and E Ulich. 1994. Vorschlag für die Restrukturierung eines
Produktionsbetriebes. Zürich: Institut für Arbietspsychologie der ETH.

Sullivan, LP. 1986. Quality function deployment: A system to assure that customer needs drive the product design and production process. Quality Progr :39-50.

Sundin, A, J Laring, J Bäck, G Nengtsson, and R Kadefors. 1994. An Ambulatory Workplace for Manual Welding: Productivity through Ergonomics. Manuscript. Göteborg: Lindholmen Development.

Tardieu, H, D Nanci, and D Pascot. 1985. Conception d’un système d’information. Paris: Editions d’Organisation.

Teiger, C, A Laville, and J Durafourg. 1974. Taches répétitives sous contrainte de temps et charge de travail. Rapport no 39. Laboratoire de physiologie du travail et d’ergonomie du CNAM.

Torsvall, L, T Akerstedt, and M. Gillberg. 1981. Age, sleep and irregular workhours: a field study with EEG recording, catecholamine excretion and self-ratings.  Scand J Wor Env Health  7:196-203.

Ulich, E. 1994. Arbeitspsychologie 3. Auflage. Zürich: Verlag der Fachvereine and Schäffer-Poeschel.

Ulich, E, M Rauterberg, T Moll, T Greutmann, and O Strohm. 1991. Task orientation and user-oriented dialogue design. In  Int J Human-Computer Interaction  3:117-144.

United Nations Educational, Scientific and Cultural Organization (UNESCO). 1992. Ergonomics Impact of Science on Society. Vol. 165. London: Taylor & Francis.

Van Daele, A. 1988. L’écran de visualisation ou la communication verbale? Analyse comparative de leur utilisation par des opérateurs de salle de contrôle en sidérurgie. Travail Hum 51(1):65-80.

—. 1992. La réduction de la complexité par les opérateurs dans le contrôle de processus continus. contribution à l’étude du contrôle par anticipation et de ses conditions de mise en œuvre. Liège: Université de Liège.

Van der Beek, AJ, LC Van Gaalen, and MHW Frings-Dresen. 1992. Working postures and activities of lorry drivers: A reliability study of on-site observation and recording on a pocket computer. Appl Ergon 23:331-336.

Vleeschdrager, E. 1986.  Hardness 10: diamonds . Paris.

Volpert, W. 1987. Psychische Regulation von Arbeitstätigkeiten. In Arbeitspsychologie. Enzklopüdie der Psychologie, edited by U Kleinbeck and J Rutenfranz. Göttingen: Hogrefe.

Wagner, R. 1985. Job analysis at ARBED. Ergonomics 28:255-273.

Wagner, JA and RZ Gooding. 1987. Effects of societal trends on participation research. Adm Sci Q 32:241-262.

Wall, TD and JA Lischeron. 1977. Worker Participation: A Critique of the Literature and Some Fresh Evidence. London: McGraw-Hill.

Wang, WM-Y. 1992. Usability Evaluation for Human-Computer Interaction (HCI). Luleå, Sweden: Luleå Univ. of Technology.

Waters, TR, V Putz-Anderson, A Garg, and LJ Fine. 1993. Revised NIOSH equation for the design and evaluation of manual handling tasks. Ergonomics 36:749-776.

Wedderburn, A. 1991. Guidelines for shiftworkers. Bulletin of European Shiftwork Topics (BEST) No. 3. Dublin: European Foundation for the Improvement of Living and Working Conditions.

Welford, AT. 1986. Mental workload as a function of demand, capacity, strategy and skill. Ergonomics 21:151-176.

White, PA. 1988. Knowing more about what we tell: ‘Introspective access’ and causal report accuracy, 10 years later. Brit J Psychol 79:13-45.

Wickens, C. 1992. Engineering Psychology and Human Performance. New York: Harper Collins.

Wickens, CD and YY Yeh. 1983. The dissociation between subjective work load and performance: A multiple resources approach. In Proceedings of the Human Factors Society 27th Annual Meeting. Santa Monica, Calif.: Human Factors Society.

Wieland-Eckelmann, R. 1992. Kognition, Emotion und Psychische Beanspruchung. Göttingen: Hogrefe.

Wikström.L, S Byström, S Dahlman, C Fransson, R Kadefors, Å Kilbom, E Landervik, L Lieberg, L Sperling, and J Öster. 1991. Criterion for Selection and Development of Hand Tools. Stockholm: National Institute of Occupational Health.

Wilkinson, RT. 1964. Effects of up to 60 hours sleep deprivation on different types of work. Ergonomics 7:63-72.

Williams, R. 1976. Keywords: A Vocabulary of Culture and Society. Glasgow: Fontana.

Wilpert, B. 1989. Mitbestimmung. In Arbeits- und Organisationspsychologie. Internationales Handbuch in Schlüsselbegriffen, edited by S Greif, H Holling, and N Nicholson. Munich: Psychologie Verlags Union.

Wilson, JR. 1991. Participation: A framework and foundation for ergonomics. J Occup Psychol 64:67-80.

Wilson, JR and EN Corlett. 1990. Evaluation of Human Work: A Practical Ergonomics Methodology. London: Taylor & Francis.

Wisner, A. 1983. Ergonomics or anthropology: A limited or wide approach to working condition in technology transfer. In Proceedings of the First International Conference On Ergonomics of Developing Countries, edited by Shahnavaz and Babri. Luleå, Sweden: Luleå Univ. of Technology.

Womack, J, T Jones, and D Roos. 1990. The Machine That Changed the World. New York: Macmillan.

Woodson, WE, B Tillman, and P Tillman. 1991. Human Factors Design Handbook. New York: McGraw-Hill.

Zhang, YK and JS Tyler. 1990. The establishment of a modern telephone cable production facility in a developing country. A case study. In International Wire and Cable Symposium Proceedings. Illinois.

Zinchenko, V and V Munipov. 1989. Fundamentals of Ergonomics. Moscow: Progress.