Thursday, 10 March 2011 15:23

Berries and Grapes

Rate this item
(0 votes)

This article covers the injury and illness prevention methods against hazards commonly encountered in production of grapes (for fresh consumption, wine, juice or raisins) and berries, including brambles (i.e., raspberries), strawberries and bush berries (i.e., blueberries and cranberries).

Grapevines are stems that climb on supporting structures. Vines planted in commercial vineyards are usually started in spring from year-old rooted or grafted cuttings. They are typically planted 2 to 3.5 m apart. Each year, the vines must be dug over, fertilized, subdivided and pruned. The style of pruning varies in different parts of the world. In the system prevalent in the United States, all the shoots except the strongest ones on the vine are later pruned; the remaining shoots are cut back to 2 or 3 buds. The resulting plant develops a strong main stem which can stand alone, before it is allowed to bear fruit. During the expansion of the main stem, the vine is loosely tied to an upright support 1.8 m tall or higher. After the fruit-producing stage is reached, the vines are carefully pruned to control the number of buds.

Strawberries are planted in early spring, midsummer or later, depending on the latitude. The plants bear fruit in the spring of the following year. A variety called everbearing strawberries produces a second, smaller crop of fruit in the fall. Most strawberries are propagated naturally by means of runners that form about two months after the planting season. The fruit is found at ground level. Brambles such as raspberries are typically shrubs with prickly stems (canes) and edible fruits. The underground parts of brambles are perennial and the canes biennial; only second-year canes bear flowers and fruits. Brambles grow fruit at heights of 2 m or less. Like grapevines, berries require frequent pruning.

Growing practices differ for each fruit species, depending on the type of soil, climate and fertilizer it needs. Close control of insects and diseases is essential, often requiring frequent application of pesticides. Some modern growers have shifted toward biological controls and careful monitoring of pest populations, spraying chemicals only at the most effective times. Most grapes and berries are harvested by hand.

In a study of non-fatal injuries for the 10-year period 1981 through 1990 in California, the most common injury within this category of farms was sprains and strains, accounting for 42% of all injuries reported. Lacerations, fractures and contusions accounted for another 37% of injuries. The most common causes of injuries were being struck by an object (27%), overexertion (23%) and falls (19%) (AgSafe 1992). In a 1991 survey, Steinke (1991) found that 65% of injuries on farms identified as producing this category of crops in California were strains, sprains, lacerations, fractures and contusions. Parts of the body injured were fingers (17%), the back (15%), eyes (14%) and the hand or wrist (11%). Villarejo (1995) reported that there were 6,000 injury claims awarded per 100,000 full-time equivalents to workers in strawberry production in California in 1989. He also noted that most workers do not find employment throughout the year, so that the percentage of workers who suffer injuries could be several times higher than the 6% figure reported.

Musculoskeletal Problems

The major hazard associated with musculoskeletal injuries in these crops is rate of work. If the owner is working in the fields, she or he is typically working quickly to finish one task and move on to the next task. Hired labour is often paid by piece-rate, the practice of paying for work solely based upon what is accomplished (i.e., kilograms of berries harvested or number of grapevines pruned). This type of payment is often at odds with the extra time required to make sure fingers are out of the clipper before squeezing, or carefully walking to and from the edge of the field when exchanging filled baskets for empty ones during harvest. A high rate of work performance can lead to using poor postures, taking undue risks, and not following good safety practices and procedures.

Hand pruning of berries or vines requires the frequent squeezing of the hand to engage a clipper, or the frequent use of a knife. Hazards from the knife are obvious, as there is no solid surface against which to place the vine, shoot or stalk and frequent cuts to the fingers, hands, arms, legs and feet are likely to result. Pruning with a knife should be done only as a last resort.

Although a clipper is the preferred tool for pruning, either in the dormant season or while foliage is on the plants or vines, its use does have hazards. The major safety hazard is the threat of cuts from contact with the open blade while placing a vine or stalk in the jaws, or from inadvertent cutting of a finger while also cutting a vine or stalk. Sturdy leather or cloth gloves are good protection against both hazards and can also provide protection against contact dermatitis, allergies, insects, bees and cuts from a trellis.

The frequency and effort required for cutting determines the likelihood of development of cumulative-trauma injuries. Although injury reports do not currently show widespread injury, this is believed to be due to the frequent job rotation found on farms. The force required to operate a common clipper is in excess of recommended values, and the frequency of effort indicates the potential for cumulative-trauma disorders, according to accepted guidelines (Miles 1996).

To minimize likelihood of injury, clippers should be kept well lubricated and blades should be sharpened frequently. When large vines are encountered, as they are frequently in grapes, the size of the clipper should be increased accordingly, so as not to overload the wrist or the clipper itself. Lopping shears or pruning saws are often required for safe cutting of large vines or plants.

Lifting and carrying of loads is typically associated with harvesting of these crops. The berries or fruit are usually hand harvested and carried in some type of basket or carrier to the edge of the field, where they are deposited. Loads are often not heavy (10 kg or less), but the distance to be travelled is significant in many cases and over uneven terrain, which may also be wet or slippery. Workers should not run on the uneven terrain and should maintain solid footing at all times.

Harvesting of these crops is often done in awkward postures and at a rapid pace. Persons typically twist and bend, bend to the ground without bending the knees and move quickly between the bush or vine and the container. Containers are sometimes placed upon the ground and pushed or pulled along with the worker. Fruit and berries can be found anywhere from ground level to 2 m in height, depending upon the crop. Brambles are typically found at heights of 1 m or less, leading to almost continuous bending of the back during harvest. Strawberries are at ground level, but workers remain on their feet and bend down to harvest.

Grapes are also commonly cut to free them from the vine during hand harvest. This cutting motion is also very frequent (hundreds of times per hour) and requires sufficient force to cause concern regarding cumulative-trauma injuries if the harvest season were to last more then a few weeks.

Working with trellises or arbours is often involved in production of vines and berries. Installing or repairing arbours frequently involves doing work at heights above one’s head and stretching while exerting a force. Sustained effort of this type can lead to cumulative injuries. Each instance is an exposure to strain and sprain injury, particularly to the shoulders and arms, resulting from exerting significant force while working in an awkward posture. Training plants on trellises requires the exertion of substantial force, a force that is increased by the weight of the vines, foliage and fruit. This force is commonly exerted through the arms, shoulders and back, all of which are susceptible to both acute and long-term injury from such overexertion.

Pesticides and Fertilizers

Grapes and berries are subject to frequent pesticide applications for control of insects and disease pathogens. Applicators, mixers, loaders and anyone else in the field or assisting with the application should follow the precautions listed on the pesticide label or as required by local regulations. Applications in these crops can be particularly hazardous because of the nature of the deposit required for pest control. Frequently, all portions of the plant must be covered, including the undersides of the leaves and all surfaces of the fruit or berries. This often implies use of very small droplets and the use of air to promote canopy penetration and deposit of the pesticide. Thus many aerosols are produced, which can be hazardous through inhalation, ocular and dermal exposure routes.

Fungicides are frequently applied as dusts to grapes and many types of berries. The most common of these dusts is sulphur, which may be used in organic farming. Sulphur can be irritating to the applicator and to others in the field. It has also been known to reach air concentrations sufficient to cause explosions and fires. Care should be taken to avoid travelling through a cloud of sulphur dust with any possible ignition source, such as an engine, electric motor or other spark-producing device.

Many fields are fumigated with highly toxic materials before these crops are planted in order to reduce the population of such pests as nematodes, bacteria, fungi and viruses before they can attack the young plants. Fumigation usually involves injection of a gas or liquid into the soil and covering with a plastic sheet to prevent the pesticide from escaping too soon. Fumigation is a specialized practice and should be attempted only by those properly trained. Fumigated fields should be posted with warnings and should not be entered until the cover has been removed and the fumigant has dissipated.

Fertilizers may generate hazards during their application. Inhalation of dust, skin contact dermatitis and irritation of the lungs, throat and breathing passages may occur. A dust mask may be useful in reducing exposure to non-irritating levels.

Workers may be required to enter fields for culturing operations such as irrigation, pruning or harvest soon after pesticides have been applied. If this is sooner than the re-entry interval specified by the pesticide label or local regulations, protective clothing must be worn to protect against exposure. The minimum protection should be a long-sleeved shirt, long-legged pants, gloves, head covering, foot coverings and eye protection. More stringent protection, including a respirator, impermeable clothing and rubber boots may be required based upon the pesticide used, time since the application and regulations. Local pesticide authorities should be consulted to determine the proper level of protection.

Machine Exposures

The use of machinery in these crops is common for soil preparation, planting, weed cultivation and harvest. Many of these crops are grown on hillsides and uneven fields, increasing the chance for tractor and equipment rollovers. General safety rules of tractor and equipment operation to avoid rollovers should be followed, as should the policy of no riders on equipment unless additional personnel must be present for proper equipment operation and a platform is provided for their safety. More information on proper use of equipment can be found in the article “Mechanization” in this chapter and elsewhere in this Encyclopaedia.

Many of these crops are also grown in uneven fields, such as on beds or ridges or in furrows. These features increase the danger when they become muddy, slippery or concealed by weeds or the plant canopy. Falling in front of equipment is a hazard, as is falling and straining or spraining a body part. Extra precautions should be taken particularly when fields are wet or at harvest, when discarded fruit may be underfoot.

Mechanical pruning of grapes is increasing around the world. Mechanical pruning typically involves rotating knives or fingers to gather vines and draw them past stationary knives. This equipment can be hazardous to anyone in the vicinity of the entry point for the cutters and should be used only by a properly trained operator.

Harvest operations typically use several machines at once, requiring coordination and cooperation of all equipment operators. Harvesting operations also, by their very nature, include crop gathering and removal, which frequently requires the use of vibrating rods or paddles, stripping fingers, fans, cutting or slicing operations and rakes, any of which are capable of causing great physical harm to persons who become entangled in them. Care should be taken to not place any person near the intake of such machines while they are running. Machine guards should always be kept in place and maintained. If guards must be removed for lubrication, adjustment or cleaning, they should be replaced before the machine is started again. Guards on an operating machine should never be opened or removed.

Other Hazards

Infections

One of the most common injuries suffered by workers in grapes and berries is a cut or puncture, either from thorns on the plant, tools or the trellis or support structure. Such open wounds are always subject to infection from the many bacteria, viruses or infectious agents present in fields. Such infections can cause serious complications, even loss of limb or life. All field workers should be protected with an up-to-date tetanus immunization. Cuts should be washed and cleaned, and antibacterial agent applied; any infections that develop should be treated by a physician immediately.

Insect bites and bee stings

Field workers tending and harvesting are at an increased risk of insect bites and bee stings. Placing hands and fingers into the plant canopy to select and grasp ripe fruit or berries increases the exposure to bees and insects that may be foraging or resting in the canopy. Some insects may be feeding on the ripe berries also, as could rodents and other vermin. The best protection is to wear long sleeves and gloves whenever working in the foliage.

Solar radiation

Heat stress

Exposure to excessive solar radiation and heat can easily lead to heat exhaustion, heat stroke or even death. Heat added to the human body through solar radiation, the effort of work and heat transfer from the environment must be removed from the body through sweat or sensible heat loss. When ambient temperatures are above 37 °C (i.e., normal body temperature), there can be no sensible heat loss, so the body must rely solely on perspiration for cooling.

Perspiration requires water. Anyone working in the sun or in a hot climate should drink plenty of fluids over the entire day. Water or sports drinks should be used, even before one feels thirsty. Alcohol and caffeine should be avoided, as they tend to act as diuretics and actually speed water loss and interfere with the body’s heat-regulating process. It is often recommended that persons drink 1 litre per hour of work in the sun or in hot climates. A sign of drinking insufficient fluids is the lack of the need to urinate.

Heat-related diseases can be life-threatening and require immediate attention. Persons suffering from heat exhaustion should be made to lie down in the shade and drink plenty of fluids. Anyone suffering from heat stroke is in grave danger and needs immediate attention. Medical assistance should be summoned immediately. If assistance is not available within a matter of minutes, one should attempt to cool the victim by immersing him or her in cool water. If the victim is unconscious, continued breathing should be assured through first aid. Do not give fluids by mouth.

Signs of heat-related diseases include excessive sweating, weakness in the limbs, disorientation, headaches, dizziness and, in extreme cases, loss of consciousness and also loss of the ability to sweat. The latter symptoms are immediately life-threatening, and action is required.

Working in vineyards and bush berry fields may increase the risk of heat-related illnesses. Air circulation is reduced between the rows, and there is the illusion of working partially in the shade. High relative humidity and cloud covers can also give one a false impression of the effects of the sun. It is necessary to drink plenty of fluids whenever working in fields.

Skin diseases

Long-term exposure to the sun can lead to premature ageing of the skin and increased likelihood of skin cancers. Persons exposed to the direct rays of the sun should wear clothing or sun-screen products to provide protection. At lower latitudes, even a few minutes of exposure to the sun can result in a severe sunburn, especially in those with fair complexions.

Skin cancers can begin on any part of the body, and suspected cancers should immediately be checked by a physician. Some of the frequent signs of skin cancers or pre-cancerous lesions are changes in a mole or birthmark, an irregular border, bleeding or a change in colour, often to a brown or gray tone. Those with a history of sun exposure should undergo annual skin cancer screenings.

Contact dermatitis and other allergies

Frequent and prolonged contact with plant excretions or plant pieces can result in sensitization and cases of contact allergies and dermatitis. Prevention through wearing long-sleeved shirts, long-legged pants and gloves whenever possible is the preferred course of action. Some creams can be used to provide a barrier to the transfer of irritants to the skin. If the skin cannot be protected from exposure to plants, washing immediately after the plant contact ends will minimize the effects. Cases of dermatitis with skin eruptions or which do not heal should be seen by a physician.

 

Back

Read 4870 times Last modified on Tuesday, 28 June 2011 08:11
More in this category: Orchard Crops »

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents