Monday, 28 March 2011 19:23

Dairy

Rate this item
(0 votes)

The dairy farmer is a livestock specialist whose aim is optimizing the health, nutrition and reproductive cycling of a herd of cows with the ultimate goal of maximal milk production. Major determinants of the farmer’s exposure to hazards are farm and herd size, labour pool, geography and degree of mechanization. A dairy farm may be a small family business milking 20 or fewer cows per day, or it may be a corporate operation using three shifts of workers to feed and milk thousands of cows around the clock. In regions of the world where the climate is quite mild, the cattle may be housed in open sheds with roofs and minimal walls. Alternatively, in some regions barns must be tightly closed to preserve sufficient heat to protect the animals and the watering and milking systems. All of these factors contribute variability to the risk profile of the dairy farmer. Nevertheless, there are a series of hazards which most people working in dairy farming around the world will encounter to at least some degree.

Hazards and Precautions

Noise

One potential hazard which clearly relates to the degree of mechanization is noise. In dairy farming, harmful noise levels are common and always related to some type of mechanical device. Leading offenders outside of the barn are tractors and chain-saws. Noise levels from these sources are often at or above the 90-100 dBA range. Within the barn, other noise sources include bedding choppers, small skid-steer loaders and milking pipeline vacuum pumps. Here again, sound pressures may exceed those levels generally considered to be damaging to the ear. Although the studies of noise-induced hearing loss in dairy farmers are limited in number, they combine to show a convincing pattern of hearing deficits affecting predominantly the higher frequencies. These losses can be quite substantial and occur considerably more frequently in farmers of all ages than in non-farm controls. In several of the studies, the losses were more notable in the left than the right ear—possibly because farmers spend much of their time with the left ear turned toward the engine and muffler when driving with an implement. Prevention of these losses may be accomplished by efforts directed at noise abatement and muffling, and institution of a hearing-conservation programme. Certainly, the habit of wearing hearing protective devices, either muffs or earplugs, may help substantially to reduce the next generation’s risk of noise-induced hearing loss.

Chemicals

The dairy farmer has contact with some chemicals which are commonly found in other types of agriculture, as well as some which are specific to the dairy industry, such as those used for cleaning the automated vacuum-powered milking pipeline system. This pipeline must be effectively cleaned before and after each use. Commonly this is done by first flushing the system with a very strong alkaline soap solution (typically 35% sodium hydroxide), followed by an acidic solution such as 22.5% phosphoric acid. A number of injuries have been observed in association with these chemicals. Spills have resulted in significant skin burns. Splatters may injure the cornea or conjunctivae of unprotected eyes. Tragic accidental ingestion—often by young children—which may occur when these materials are pumped into a cup and then briefly left unattended. These situations can be best prevented by the use of an automated, closed flush system. In the absence of an automated system, precautions must be taken to restrict access to these solutions. Measuring cups should be clearly labelled, reserved for only this purpose, never left unattended and rinsed thoroughly after each use.

Like others working with livestock, dairy farmers may have exposure to a variety of pharmaceutical agents ranging from antibiotics and progestational agents to prostaglandin inhibitors and hormones. Depending upon the country, dairy farmers also may use fertilizers, herbicides and insecticides with varying degrees of intensity. In general, the dairy farmer uses these agrochemicals less intensively than persons working in some other types of farming. However, the same care in mixing, applying and storing these materials is necessary. Appropriate application techniques and protective garb are as important for the dairy farmer as anyone else working with these compounds.

Ergonomic Risks

Although data on the prevalence of all musculoskeletal problems are currently incomplete, it is clear that dairy farmers have increased risk of arthritis of the hip and knee compared to nonfarmers. Similarly, their risk of back problems may also be elevated. Although not well studied, there is little question that ergonomics is a major problem. The farmer may routinely carry weights in excess of 40 kg—often in addition to considerable personal body weight. Tractor driving produces abundant vibration exposure. However, it is the portion of the job devoted to milking that seems most ergonomically significant. A farmer may bend or stoop 4 to 6 times in the milking of a single cow. These motions are repeated with each of a number of cows twice daily for decades. Carrying the milking equipment from stall to stall imposes an additional ergonomic load on the upper extremities. In countries where milking is less mechanized, the ergonomic load on the dairy farmer might be different, but still it is likely to reflect considerable repetitive strain. A potential solution in some countries is the shift to milking parlours. In this setting the farmer can milk a number of cows simultaneously while standing several feet below them in the central pit of the parlour. This eliminates the stooping and bending as well as the upper-extremity load of carrying equipment from stall to stall. The latter problem is also addressed by the overhead track systems being introduced in some Scandinavian countries. These support the weight of the milking equipment when moving between stalls, and can even provide a convenient seat for the milker. Even with these potential solutions, much remains to be learned about ergonomic problems and their resolution in dairy farming.

Dust

A closely linked problem is organic dust. This is a complex, often allergenic and generally ubiquitous material on dairy farms. The dust frequently has high concentrations of endotoxin and may contain beta-glucans, histamine and other biologically active materials (Olenchock et al. 1990). Levels of total and respirable dust may exceed 50 mg/m3 and 5 mg/m3, respectively, with certain operations. These most commonly involve work with microbially contaminated feed or bedding within a closed space such as a barn, hay loft, silo or grain bin. Exposure to these dust levels may result in acute problems such as ODTS or hypersensitivity pneumonitis (“farmer’s lung disease”). Chronic exposure may also play a role in asthma, farmer’s lung disease and chronic bronchitis, which seems to occur at twice the rate of a non-farm population (Rylander and Jacobs 1994). The prevalence rates of some of these problems are higher in settings where moisture levels in the feed are likely to be elevated and in areas where barns are more tightly closed because of climatic requirements. Various farming practices such as drying of the hay and shaking out of feed for the animals by hand, and the choice of bedding material, can be major determinants of the levels of both the dust and its associated illnesses. Farmers can often devise a number of techniques to minimize either the amount of microbial overgrowth or its subsequent aerosolization. Examples include the use of sawdust, newspapers and other alternative materials for bedding instead of moulded hay. If hay is used, the addition of a quart of water to the cut surface of the bale minimizes the dust generated by a mechanical bedding chopper. Capping vertical silos with plastic sheets or tarpaulins without additional feed on top of this layer minimizes the dust of subsequent uncapping. The use of small amounts of moisture and/or ventilation in situations where dust is likely to be generated is often possible. Finally, farmers must anticipate potential dust exposures and use appropriate respiratory protection in these situations.

Allergens

Allergens may represent a troublesome health challenge for some dairy farmers. Major allergens appear to be those encountered in the barns, typically animal danders and “storage mites” living in feed stored within the barns. One study has extended the storage mite problem beyond the barn, finding sizeable populations of these species living within farmhouses as well (van Hage-Hamsten, Johansson and Hogland 1985). Mite allergy has been confirmed as a problem in a number of parts of the world, often with differing species of mites. Reactivity to these mites, to cow dander and to multiple other less significant allergens, results in several allergic manifestations (Marx et al. 1993). These include immediate onset of nasal and eye irritation, allergic dermatitis and, of greatest concern, allergy-mediated occupational asthma. This can occur as either an immediate or delayed (up to 12 hours) reaction and may occur in individuals not previously known to be asthmatic. It is of concern because the dairy farmer’s involvement in barn activities is daily, intensive and lifelong. With this nearly continual allergic re-challenge, progressively more severe asthma is likely to be seen in some farmers. Prevention includes avoidance of dust, which is the most effective and, unfortunately, the most difficult intervention for most dairy farmers. The results of medical therapies, including allergy shots, topical steroids or other anti-inflammatory agents, and symptomatic relief with bronchodilators, have been mixed.

 

Back

Read 5022 times Last modified on Saturday, 30 July 2022 02:57

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Livestock Rearing References

Aldhous, P. 1996. Scrapie theory fed BSE complacency, now fears grow for unborn babies. New Scientist 150:4-5.

Ahlgren, GH. 1956. Forage Crops. New York: McGraw-Hill Book Co.

American Conference of Governmental Industrial Hygienists (ACGIH). 1994. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH: ACGIH.

Auty, JH. 1983. Draught animal power in Australia. Asian Livestock VIII:83-84.

Banwart, WC and JM Brenner. 1975. Identification of sulfur gases evolved from animal manures. J Environ Qual 4:363-366.

Baxter, PJ. 1991. Toxic marine and freshwater algae: An occupational hazard? Br J Ind Med 48(8):505-506.

Bell, RG, DB Wilson, and EJ Dew. 1976. Feedlot manure top dressing for irrigated pasture: Good agricultural practice or a health hazard? B Environ Contam Tox 16:536-540.

Benenson, AS. 1990. Control of Communicable Diseases in Man. Washington, DC: American Public Health Association.

—. 1995. Control of Communicable Diseases Manual. Washington, DC: American Public Health Association.

Brown, LR. 1995. Meat production takes a leap. In Vital Signs 1995: The Trends that are Shaping our Future, edited by LR Brown, N Lenssen, and H Kane. New York: WW Norton & Company.

Bursey, RG. 1992. New uses of dairy products. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture. Washington, DC: USDA.

Calandruccio, RA and JH Powers. 1949. Farm accidents: A clinical and statistical study covering twenty years. Am Surg (November):652-660.

Cameron, D and C Bishop. 1992. Farm accidents in adults. Br Med J 305:25-26.

Caras, RA. 1996. A Perfect Harmony: The Intertwining Lives of Animals and Humans throughout History. New York: Simon & Schuster.

Carstensen, O, J Lauritsen, and K Rasmussen. 1995. The West-Justland study on prevention of farm accidens, Phase 1: A study of work specific factors in 257 hospital-treated agricultural injuries. Journal of Agricultural Safety and Health 1:231-239.

Chatterjee, A, D Chattopadhyay, D Bhattacharya, Ak Dutta, and DN Sen Gupta. 1980. Some epidemiologic aspects of zoophilic dermatophytosis. International Journal of Zoonoses 7(1):19-33.

Cherry, JP, SH Fearirheller, TA Foglis, GJ Piazza, G Maerker, JH Woychik, and M Komanowski. 1992. Innovative uses of animal byproducts. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture. Washington, DC: USDA.

Crowley, M. 1995. Aquaculture trends and technology. National Fisherman 76:18-19.

Deere & Co. 1994. Farm and Ranch Safety Management. Moline, IL: Deere & Co.

DeFoliart, GR. 1992. Insects as human foods. Crop Protection 11:395-399.

Donham, KJ. 1985. Zoonotic diseases of occupational significance in agriculture: A review. International Journal of Zoonoses 12:163-191.

—. 1986. Hazardous agents in agricultural dusts and methods of evaluation. Am J Ind Med 10:205-220.

Donham, KJ and LW Knapp. 1982. Acute toxic exposure to gases from liquid manure. J Occup Med 24:142-145

Donham, KJ and SJ Reynolds. 1995. Respiratory dysfunction in swine production workers: Dose-response relationship of environmental exposures and pulmonary function. Am J Ind Med 27:405-418.

Donham, KJ and L Scallon. 1985. Characterization of dusts collected from swine confinement buildings. Am Ind Hyg Assoc J 46:658-661.

Donham, KJ and KM Thu. 1995. Agriculture medicine and enivronmental health: The missing component of the sustainable agricultural movement. In Agricultural health and safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock, and A Senthilselvan. Boca Raton, FL: CRC Press.

Donham, KJ, MJ Rubino, TD Thedell and J Kammenmeyer. 1977. Potential health hazards of workers in swine confinement buildings. J Occup Med 19:383-387.

Donham, KJ, J Yeggy, and RR Dauge. 1985. Chemical and physical parameters of liquid manure from swine confinement facilities: Health implications for workers, swine and the environment. Agricultural Wastes 14:97-113.

—. 1988. Production rates of toxic gases from liquid manure: Health implications for workers and animals in swine buildings. Bio Wastes 24:161-173.

Donham, KJ, DC Zavala, and JA Merchant. 1984. Acute effects of work environment on pulmonary functions of swine confinement workers. Am J Ind Med 5:367-375.

Dosman, JA, BL Graham, D Hall, P Pahwa, H McDuffie, M Lucewicz, and T To. 1988. Respiratory symptoms and alterations in pulmonary function tests in swine producers in Saskatchewan: Results of a survey of farmers. J Occ Med 30:715-720.

Douglas, JDM. 1995. Salmon farming: Occupational health in a new rural industry. Occup Med 45:89-92.

Douglas, JDM and AH Milne. 1991. Decompression sickness in fish farm workers: A new occupational hazard. Br Med J 302:1244-1245.

Durning, AT and HB Brough. 1992. Reforming the livestock economy. In State of the World, edited by LR Brown. London: WW Norton & Company.

Erlich, SM, TR Driscoll, JE Harrison, MS Frommer, and J Leight. 1993. Work-related agricultural fatalities in Australia, 1982-1984. Scand J Work Environ Health 19:162-167.

Feddes, JJR and EM Barber. 1994. Agricultural engineering solutions to problems of air contaminants in farm silos and animal buildings. In Agricultural Health and Safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock and A Senthilselvan. Boca Raton, FL: CRC Press.

Ferguson, IR and LRC Path. 1993. Rats, fish and Weil’s disease. Safety and Health Practitioner :12-16.

Food and Agriculture Organization (FAO) of the United Nations. 1965. Farm Implements for Arid and Tropical Regions. Rome: FAO.

—. 1995. The State of the World Fisheries and Aquaculture. Rome: FAO.

Fretz, P. 1989. Injuries from farm animals. In Principles of Health and Safety in Agriculture, edited by JA Dosman and DW Crockcroft. Boca Raton, FL: CRC Press.

Froehlich, PA. 1995. Engineering Control Observations and Recommendations for Insect Rearing Facilities. Cincinnati, OH: NIOSH.

Gillespie, JR. 1997. Modern Livestock and Poultry Production. New York: Delmar Publishers.

Gorhe, DS. 1983. Draught animal power vs mechanization. Asian Livestock VIII:90-91.

Haglind, M and R Rylander. 1987. Occupational exposure and lung function measurements among workers in swine confinement buildings. J Occup Med 29:904-907.

Harries, MG and O Cromwell. 1982.Occupational allergy caused by allergy to pig’s urine. Br Med J 284:867.

Heederick, D, R Brouwer, K Biersteker, and J. Boleij. Relationship of airborne endotoxin and bacteria levels in pig farms with lung function and respiratory symptoms of farmers. Intl Arch Occup Health 62:595-601.

Hogan, DJ and P Lane. 1986. Dermatologic disorders in agriculture. Occup Med: State Art Rev 1:285-300.

Holness, DL, EL O’Glenis, A Sass-Kortsak, C Pilger, and J Nethercott. 1987. Respiratory effects and dust exposures in hog confinement farming. Am J Ind Med 11:571-580.

Holness, DL and JR Nethercott. 1994. Acute and chronic trauma in hog farmers. In Agricultural Health and Safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock, and A Senthilselvan. Boca Raton, FL: CRC Press.

Iowa Department of Public Health. 1995. Sentinel Project Research Agricultural Injury Notification System. Des Moines, IA: Iowa Department of Public Health.

Iverson, M, R Dahl, J. Korsgaard, T Hallas, and EJ Jensen. 1988. Respiratory symptoms in Danish farmers: An epidemiological study of risk factors. Thorax 48:872-877.

Johnson, SA. 1982. Silkworms. Minneapolis, MN: Lerner Publications.

Jones, W, K Morring, SA Olenchock, T Williams, and J. Hickey. 1984. Environmental study of poultry confinement buildings. Am Ind Hyg Assoc J 45:760-766.

Joshi, DD. 1983. Draught animal power for food production in Nepal. Asian Livestock VIII:86-87.

Ker, A. 1995. Farming Systems in the African Savanna. Ottawa,Canada: IDRC Books.

Khan, MH. 1983. Animal as power source in Asian agriculture. Asian Livestock VIII:78-79.

Kiefer, M. 1996. Florida Department of Agriculture and Consumer Services Division of Plant Industry, Gainesville, Florida. Cincinnati, OH: NIOSH.

Knoblauch, A, B Steiner, S Bachmann, G Trachsler, R Burgheer, and J Osterwalder. 1996. Accidents related to manure in eastern Switzerland: An epidemiological study. Occup Environ Med 53:577-582.

Kok, R, K Lomaliza, and US Shivhare. 1988. The design and performance of an insect farm/chemical reactor for human food production. Canadian Agricultural Engineering 30:307-317.

Kuo, C and MCM Beveridge. 1990. Mariculture: Biological and management problems, and possible engineering solutions. In Engineering for Offshore Fish Farming. London: Thomas Telford.

Layde, PM, DL Nordstrom, D Stueland, LB Wittman, MA Follen, and KA Olsen. 1996. Animal-related occupational injuries in farm residents. Journal of Agricultural Safety and Health 2:27-37.

Leistikow, B Donham, JA Merchant, and S Leonard. 1989. Assessment of U.S. poultry worker respiratory risk. Am J Ind Med 17:73-74.

Lenhart, SW. 1984. Sources of respiratory insult in the poultry processing industry. Am J Ind Med 6:89-96.

Lincoln, JM and ML Klatt. 1994. Preventing Drownings of Commercial Fishermen. Anchorage, AK: NIOSH.

MacDiarmid, SC. 1993. Risk analysis and the importation of animals and animal products. Rev Sci Tech 12:1093-1107.

Marx, J, J Twiggs, B Ault, J Merchant, and E Fernandez-Caldas. 1993. Inhaled aeroallergen and storage mite reactivity in a Wisconsin farmer nested case-control study. Am Rev Respir Dis 147:354-358.

Mathias, CGT. 1989. Epidemiology of occupational skin disease in agriculture. In Principles of Health and Safety in Aagriculture, edited by JA Dosman and DW Cockroft. Boca Raton, FL: CRC Press.

Meadows, R. 1995. Livestock legacy. Environ Health Persp 103:1096-1100.

Meyers, JR. 1997. Injuries among Farm Workers in the United States, 1993. DHHS (NIOSH) Publication No. 97-115. Cincinnati, OH: NIOSH.

Mullan, RJ and LI Murthy. 1991. Occupational sentinel health events: An up-dated list for physician recognition and public health surveillance. Am J Ind Med 19:775-799.

National Institute for Occupational Safety and Health (NIOSH). 1993. Injuries among Farm Workers in the United states. Cincinnati, OH: NIOSH.

—. 1994. Request for Assistance in Preventing Organic Dust Toxic Syndrome. Washington, DC: GPO.

National Institutes of Health (NIH). 1988. Institutional Administrator’s Manual for Laboratory Animal Care and Use. Washington, DC: GPO.

National Research Council (NRC). 1989. Alternative Agriculture: Committee on the Role of Alternative Farming Methods in Modern Production Agriculture. Washington, DC: National Academy Press.

National Safety Council. 1982. Accident Facts. Chicago, IL: National Safety Council.

—. 1985. Electrofishing. NSC data sheet I-696-85. Chicago, IL: National Safety Council.

Nesheim, MC, RE Austic, and LE Card. 1979. Poultry Production. Philadelphia, PA: Lea and Febiger.

Olenchock, S, J May, D Pratt, L Piacitelli, and J Parker. 1990. Presence of endotoxins in different agricultural environments. Am J Ind Med 18:279-284.

O’Toole, C. 1995. Alien Empire. New York: Harper Collins Publishers.

Orlic, M and RA Leng. 1992. Prelimenary Proposal to Assist Bangladesh to Improve Ruminant Livestock Productivity and Reduce Methane Emissions. Washington, DC: US Environmental Protection Agency, Global Change Division.

Panti, NK and SP Clark. 1991. Transient hazardous conditions in animal building due to manure gas release during slurry mixing. Applied Engineering in Agriculture 7:478-484.

Platt, AE. 1995. Aquaculture boosts fish catch. In Vital Signs 1995: The Trends that Are Shaping our Future, edited by LR Brown, N Lenssen, and H Kane. New York: WW Norton & Company.

Pursel, VG, CE Rexroad, and RJ Wall. 1992. Barnyard biotchnology may soon produce new medical therapeutics. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture Washington, DC: USDA.

Ramaswami, NS and GL Narasimhan. 1982. A case for building up draught animal power. Kurushetra (India’s Journal for Rural Development) 30:4.

Reynolds, SJ, KJ Donham, P Whitten, JA Merchant, LF Burmeister, and WJ Popendorf. 1996. A longitudinal evaluation of dose-response relationships for environmental exposures and pulmonary function in swine production workers. Am J Ind Med 29:33-40.

Robertson, MH, IR Clarke, JD Coghlan, and ON Gill. 1981. Leptospirosis in trout farmers. Lancet: 2(8247)626-627.

Robertson, TD, SA Ribeiro, S Zodrow, and JV Breman. 1994. Assessment of Strategic Livestock Feed Supplementation as an Opportunity for Generating Income for Small Scale Dairy Producers and Reducing Methane Emissions in Bangladesh. Washington, DC: US Environmental Protection Agency.

Rylander, R. 1994. Symptoms and mechanisms: Inflammation of the lung. Am J Ind Med 25:19-24.

Rylander, R, KJ Donham, C Hjort, R Brouwer, and D Heederik. 1989. Effects of exposure to dust in swine confinement buildings: A working group report. Scand J Work Environ Health 15:309-312.

Rylander, R and N Essle. 1990. Bronchial hyperactivity among pig and dairy farmers. Am J Ind Med 17:66-69.

Rylander, R, Y Peterson, and KJ Donman. 1990. Questionnaire evaluating organic dust exposure. Am J Ind Med 17:121-128.

Rylander, R and R Jacobs. 1994. Organic Dusts: Exposure, Effects and Prevention. Chicago, IL: Lewis Publishing.
Safina, C. 1995. The world’s imperiled fish. Sci Am 272:46-53.

Scherf, BD. 1995. World Watch List for Domestic Animal Diversity. Rome: FAO.

Schmidt, MJ. 1997. Working elephants. Sci Am 279:82-87.

Schmidt, JO. 1992. Allergy to venomous insects. In The Hive and the Honey Bee, edited by JM Graham. Hamilton: DaDant & Sons.

Shumacher, MJ and NB Egen. 1995. Significance of Africanized bees on public health. Arch Int Med 155:2038-2043.

Sherson, D, I Hansen, and T Sigsgaard. 1989. Occupationally related respiratory symptoms in trout-processing workers. Allergy 44:336-341.

Stem, C, DD Joshi, and M Orlic. 1995. Reducing Methane Emissions from Ruminant Livestock: Nepal prefeasibility Study. Washington, DC: US Environmental Protection Agency, Global Change Division.

Sweeten, JM. 1995. Odor measurement technology and applications: A state-of-the-art review. In Seventh International Symposium on Agricultural and Food Processing Wastes: Proceedings of the 7th International Symposium, edited by CC Ross. American Society of Agricultural Engineering.

Tannahill, R. 1973. Food in History. New York: Stein and Day.

Thorne, PS, KJ Donham, J Dosman, P Jagielo, JA Merchant, and S Von Essen. 1996. Occupational health. In Understanding the Impacts of Large-scale Swine Production, edited by KM Thu, D Mcmillan, and J Venzke. Iowa City, IA: University of Iowa.

Turner, F and PJ Nichols. 1995. Role of the epithelium in the response of the airways. Abstract for the 19th Cotton and Other Organic Dust Research Conference, 6-7 January, San antonio, TX.

United Nations Development Programme (UNDP). 1996. Urban Agriculture: Food, Jobs, and Sustainable Cities. New York: UNDP.

US Department of Agriculture (USDA). 1992. Agricultural Waste Management Field Handbook. Washington, DC: USDA Soil Conservation Service.

—. 1996a. Livestock and Poultry: World Markets and Trade. Circular Series FL&P 1-96. Washington DC: USDA Foreign Agricultural Service.

—. 1996b. Dairy: World Markets and Trade. Circular Series FD 1-96. Washington DC: USDA Foreign Agricultural Service.

—. 1997. Poultry Production and Value, 1996 Summary. Washington, DC: National Agricultural Statistics Service.

van Hage-Hamsten, M, S Johansson, and S Hogland. 1985. Storage mite allergy is common in a farming population. Clin Allergy 15:555-564.

Vivian, J. 1986. Keeping Bees. Charlotte, VT: Williamson Publishing.

Waller, JA. 1992. Injuries to farmers and farm families in a dairy state. J Occup Med 34:414-421.

Yang, N. 1995. Research and development of buffalo draught power for farming in China. Asian Livestock XX:20-24.

Zhou, C and JM Roseman. 1995. Agriculture-related residual injuries: Prevalence, type, and associated factors among Alabama farm operators, 1990. Journal of Rural Health 11:251-258.

Zuehlke, RL, CF Mutel, and KJ Donham. 1980. Diseases of Agricultural Workers. Iowa City, IA: Department of Preventive Medicine and Environmental Health, University of Iowa.