Monday, 28 March 2011 19:30

Poultry and Egg Production

Rate this item
(4 votes)

Farm production of birds weighing 18 kg or less includes not only domestic birds such as chickens, turkeys, ducks, geese and guineas, but also game birds produced for hunting, such as partridges, quail, grouse and pheasants. While some of these birds are raised outdoors, the majority of commercial poultry and egg production occurs in specially designed confinement houses or barns. Larger birds weighing between 40 and 140 kg, such as cassowaries, rheas, emus and ostriches, are also raised on farms for their meat, eggs, leather, feathers and fat. However, because of their larger size, most of these birds, which are known collectively as ratites, are usually raised outdoors in fenced-in areas containing shelters.

Chickens and turkeys comprise the majority of poultry produced in the world. US farmers annually produce one-third of the world’s chickens—more than the next six leading chicken-producing countries combined (Brazil, China, Japan, France, the United Kingdom and Spain). Similarly, more than half the world’s turkey production occurs in the United States, followed by France, Italy, the United Kingdom and Germany.

While commercial chicken production occurred in the United States as early as 1880, poultry and egg production was not recognized as a large-scale industry until about 1950. In 1900, a chicken weighed slightly less than a kilogram after 16 weeks. Before the emergence of poultry production as an industry, chickens purchased for eating were seasonal, being most abundant in early summer. Improvements in breeding, feed-to-weight conversion, processing and marketing practices, housing and disease control contributed to the poultry industry’s growth. The availability of artificial vitamin D also made a major contribution. All these improvements resulted in year-round poultry production, shorter production periods per flock and an increase in the number of birds housed together from only a few hundred to several thousand. The production of broilers (7-week-old chickens weighing approximately 2 kg) increased dramatically in the United States, from 143 million chickens in 1940, to 631 million in 1950, to 1.8 billion in 1960 (Nesheim, Austic and Card 1979). US farmers produced approximately 7.6 billion broilers in 1996 (USDA 1997).

Egg production has also seen dramatic growth similar to broiler production. At the beginning of the twentieth century, a laying hen annually produced about 30 eggs, mostly in the spring. Today, the annual average per layer is more than 250 eggs.

Ratite farming primarily consists of the ostrich from Africa, the emu and cassowary from Australia and the rhea from South America. (Figure 1 shows a farm flock of ostriches, and figure 2 shows a farm flock of emus.) Ratite farming first started in South Africa in the late 1800s in response to a fashion demand for the wing and tail feathers of ostriches. While ostrich plumes no longer decorate hats and clothing, commercial production still occurs not only in South Africa, but also in other African countries such as Namibia, Zimbabwe and Kenya. Ratite farming also occurs in Australia, Germany, Great Britain, Italy, China and the United States. The meat of these birds is gaining popularity because, while it is a red meat with a beefy taste and texture, it has total and saturated fat levels much lower than beef.

Figure 1. Part of a commercial flock of 3- to 6-week old ostriches

LIV090F1

Roger Holbrook, Postime Ostrich, Guilford, Indiana

When processed at about 12 months of age, each bird will weigh approximately 100 kg, of which 35 kg is boneless meat. An adult ostrich can weigh as much as 140 kg.

Figure 2. Commercial flock of 12-month old emus

LIV090F2

Volz Emu Farm, Batesville, Indiana

When processed at about 14 months of age, each bird will weigh between 50 and 65 kilograms, of which approximately 15 kilograms is meat and 15 kilograms is fat for oil and lotions.

Poultry Confinement Housing

A typical poultry confinement house in the United States is a long (60 to 150 m), narrow (9 to 15 m) single-storey barn with a dirt floor covered with litter (a layer of wood shavings, sphagnum peat or sawdust). Both ends of a confinement house have large doors, and both sides have half-side curtains running the length of the structure. Watering systems (called drinkers) and automatic feeding systems are located close to the floor and run the entire length of a house. Large, 1.2-m diameter propeller fans are also present in a poultry house to keep the birds comfortable. A poultry farmer’s daily tasks include maintaining acceptable environmental conditions for the birds, ensuring the continuous flow of feed and water and collecting and disposing of dead birds.

Watering and feeding systems are raised 2.5 to 3 metres above the floor when a flock reaches its processing age to accommodate catchers, workers who collect the birds for transport to a poultry processing plant. Collecting chickens is usually done by hand. Each member of a crew must bend over or stoop to gather several birds at a time and place them into coops, cages or crates. Each worker will repeat this process several hundred times during a work shift (see figure 3). For other types of poultry (e.g., ducks and turkeys), workers herd the birds to a collection area. Turkey catchers wave sticks with red bags tied to them in order to separate several birds at a time from a flock and drive them into a holding pen at the barn’s entrance (see figure 4).

Figure 3. Chicken catchers collecting broilers and placing them in crates for delivery to a poultry processing plant.

LIV090F3

Steven W. Lenhart

Figure 4. Turkey catchers separating birds from a flock and driving them into a holding pen.

LIV090F4

Steven W. Lenhart

Poultry confinement houses vary from this general description depending primarily on the type of birds being housed. For example, in commercial egg production, adult hens or layers have traditionally been kept in cages arranged in parallel banks. Caged laying-hen systems will be banned in Sweden in 1999 and replaced by loose laying-hen systems. (A loose laying system is shown in figure 5). Another difference between poultry confinement houses is that some do not have litter-covered floors but instead have either slotted or plastic-coated wire floors with manure pits or liquid manure catchment areas under them. In western Europe, poultry confinement houses tend to be smaller than US houses, and they utilize block construction with cement floors for easy litter removal. Western European poultry confinement houses are also decontaminated and floor litter removed after every flock.

Figure 5. A loose laying system

LIV090F6

Steven W. Lenhart

Health Risks

The health and safety risks of poultry farmers, their family members (including children) and others who work in poultry confinement houses have increased as the poultry industry has grown. Raising a poultry flock requires a farmer to work 7 days a week. Consequently, unlike most occupations, exposures to contaminants occur over several consecutive days, with the period between flocks (as short as 2 days) being the only time of non-exposure to poultry house contaminants. The air of a poultry house can contain gaseous agents such as ammonia from litter, carbon monoxide from poorly ventilated gas-fired heaters and hydrogen sulphide from liquid manure. Also, particles of organic or agricultural dust are aerosolized from poultry house litter. Poultry house litter contains an assortment of contaminants including bird excreta, feathers and dander; feed dust; insects (beetles and flies), mites and their parts; micro-organisms (viral, bacterial and fungal); bacterial endotoxin; and histamine. The air of a poultry house can be very dusty, and for a first-time or occasional visitor, the smell of manure and the pungent odour of ammonia can at times be overwhelming. However, poultry farmers seemingly develop an adaptive tolerance to the smell and to ammonia’s odour.

Because of their inhalation exposures, unprotected poultry workers are at risk of developing respiratory diseases such as allergic rhinitis, bronchitis, asthma, hypersensitivity pneumonitis or allergic alveolitis and organic dust toxic syndrome. Acute and chronic respiratory symptoms experienced by poultry workers include cough, wheezing, excessive mucus secretion, shortness of breath and chest pain and tightness. Pulmonary function testing of poultry workers has provided evidence suggesting not only the risk for chronic obstructive diseases such as chronic bronchitis and asthma, but also restrictive diseases such as chronic hypersensitivity pneumonitis. Common non-respiratory symptoms among poultry workers include eye irritation, nausea, headache and fever. Of approximately 40 zoonotic diseases of agricultural importance, six (Mycobacterium avium infection, erysipeloid, listeriosis, conjunctival Newcastle infection, psittacosis and dermatophytosis) are of concern to poultry workers, although they occur only rarely. Non-zoonotic infectious diseases of concern include candidiasis, staphylococcosis, salmonellosis, aspergillosis, histoplasmosis and cryptococcosis.

There are also health issues affecting poultry workers that are as yet unstudied or poorly understood. For example, poultry farmers and especially chicken catchers develop a skin condition they refer to as galding. This condition has an appearance of a rash or dermatitis and primarily affects a person’s hands, forearms and inner thighs. The ergonomics of poultry catching are also unstudied. Bending to collect several thousand birds every work shift and carrying eight to fifteen chickens, each weighing from 1.8 to 2.3 kg, is physically demanding, but how this work affects a catcher’s back and upper extremities is unknown.

The extent to which the many psychosocial factors associated with farming have affected the lives of poultry farmers and their families is also unknown, but occupational stress is perceived by many poultry farmers as a problem. Another important but unstudied issue is the extent to which the health of farmers’ children is affected as a consequence of work in poultry houses.

Respiratory Health Protection Measures

The best way to protect any worker from exposure to airborne contaminants is with effective engineering controls that capture potential contaminants at their source before they can become airborne. In most industrial environments, airborne contaminants can be reduced to safe levels at their source by the installation of effective engineering control measures. Wearing respirators is the least desirable method for reducing workers’ exposures to airborne contaminants, and respirator use is recommended only when engineering controls are not feasible, or while they are being installed or repaired. Nevertheless, at present, wearing a respirator is still probably the most feasible method available for reducing poultry workers’ exposures to airborne contaminants. The general ventilation systems in poultry houses are not primarily intended to reduce the exposures of poultry workers. Research is going on to develop appropriate ventilation systems to reduce airborne contamination.

Not all respirators provide the same level of protection, and the type of respirator selected for use in a poultry confinement house can vary depending on the age of the birds being raised, age and condition of the litter, drinker type and position of the side curtains (open or closed). All of these are factors affecting airborne agricultural dust and ammonia concentrations. Airborne dust levels are highest during poultry-catching operations, at times to the point that one cannot see from one end of a poultry house to the other. A full-facepiece respirator with high-efficiency filters is recommended as the minimum protection for poultry workers based on bacterial endotoxin measurements made during chicken catching.

When ammonia levels are high, combination or “piggyback” cartridges are available that filter ammonia and particulates. A more expensive powered air-purifying respirator with a full-facepiece and high-efficiency filters may also be appropriate. These devices have the advantage that filtered air is constantly delivered to the wearer’s facepiece, resulting in less breathing resistance. Hooded, powered air-purifying respirators are also available and can be used by bearded workers. Respirators providing less protection than full-facepiece or powered air-purifying types may be adequate for some work situations. However, downgrading the level of protection, such as to a half-mask disposable respirator, is recommended only after environmental measurements and medical monitoring show that the use of a less protective respirator will reduce exposures to safe levels. Repeated exposures of the eyes to poultry dust increase the risk for eye injury and disease. Respirators with full-facepieces and those with hoods have a benefit of also providing eye protection. Poultry workers who choose to wear half-mask respirators should also wear eyecup goggles.

For any respirator to protect its wearer, it must be used in accordance with a complete respiratory-protection programme. However, while poultry farmers experience inhalation exposures for which respirator usage may be beneficial, most of them are not currently prepared to carry out a respiratory protection programme by themselves. This need may be addressed by the development of regional or local respiratory protection programmes in which poultry farmers can participate.

Manure pits should be considered confined spaces. A pit’s atmosphere should be tested if entry is unavoidable, and a pit should be ventilated if it is oxygen-deficient or contains toxic levels of gases or vapours. Safe entry may also require wearing a respirator. In addition, a standby person may be needed to stay in constant visual or speech contact with workers inside a manure pit.

Safety Risks

Safety risks associated with poultry and egg production include unguarded chains, sprockets, winches, belts and pulleys on fans, feeding equipment and other machinery. Scratches, pecks and even bites by the larger birds are also safety hazards. A male ostrich is especially protective of his nest during mating season, and when he feels threatened, he will attempt to kick any intruder. Long toes with sharp nails add to the danger of an ostrich’s powerful kick.

Electrical hazards created by improperly grounded or non-corrosion-resistant equipment or poorly insulated wires in a poultry house can result in electrocution, non-fatal electrical shock or fire. Poultry dust will burn, and poultry farmers tell anecdotes about accumulated dust exploding within gas-fired heaters when the dust was aerosolized during housekeeping chores. Researchers with the US Bureau of Mines have performed explosiveness testing of agricultural dusts. When aerosolized in a 20-litre test chamber and ignited, dust that was collected from the tops of heater cabinets and from window ledges in chicken houses was determined to have a minimum explosible concentration of 170 g/m3. Sieved samples of poultry house litter could not be ignited. By comparison, grain dust evaluated under the same laboratory conditions had a minimum explosible concentration of 100 g/m3.

Safety Measures

Measures can be taken to reduce safety risks associated with poultry and egg production. For protection from moving parts, all machinery should be guarded, and fans should be screened. For tasks involving hand contact with birds, gloves should be worn. High standards of personal hygiene should be maintained, and any injuries, no matter how minor, caused by machinery or birds should be treated immediately to avoid infection. When approaching a ratite, movement toward the bird should be from the side or behind to avoid being kicked. A lockout system should be used when servicing electrical equipment. Poultry farmers should frequently remove settled dust from surfaces, but they should be aware that, on rare occasions, an explosion can result when high concentrations of accumulated dust are aerosolized within an enclosure and ignited.

 

Back

Read 10895 times Last modified on Thursday, 27 October 2011 21:33

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Livestock Rearing References

Aldhous, P. 1996. Scrapie theory fed BSE complacency, now fears grow for unborn babies. New Scientist 150:4-5.

Ahlgren, GH. 1956. Forage Crops. New York: McGraw-Hill Book Co.

American Conference of Governmental Industrial Hygienists (ACGIH). 1994. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH: ACGIH.

Auty, JH. 1983. Draught animal power in Australia. Asian Livestock VIII:83-84.

Banwart, WC and JM Brenner. 1975. Identification of sulfur gases evolved from animal manures. J Environ Qual 4:363-366.

Baxter, PJ. 1991. Toxic marine and freshwater algae: An occupational hazard? Br J Ind Med 48(8):505-506.

Bell, RG, DB Wilson, and EJ Dew. 1976. Feedlot manure top dressing for irrigated pasture: Good agricultural practice or a health hazard? B Environ Contam Tox 16:536-540.

Benenson, AS. 1990. Control of Communicable Diseases in Man. Washington, DC: American Public Health Association.

—. 1995. Control of Communicable Diseases Manual. Washington, DC: American Public Health Association.

Brown, LR. 1995. Meat production takes a leap. In Vital Signs 1995: The Trends that are Shaping our Future, edited by LR Brown, N Lenssen, and H Kane. New York: WW Norton & Company.

Bursey, RG. 1992. New uses of dairy products. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture. Washington, DC: USDA.

Calandruccio, RA and JH Powers. 1949. Farm accidents: A clinical and statistical study covering twenty years. Am Surg (November):652-660.

Cameron, D and C Bishop. 1992. Farm accidents in adults. Br Med J 305:25-26.

Caras, RA. 1996. A Perfect Harmony: The Intertwining Lives of Animals and Humans throughout History. New York: Simon & Schuster.

Carstensen, O, J Lauritsen, and K Rasmussen. 1995. The West-Justland study on prevention of farm accidens, Phase 1: A study of work specific factors in 257 hospital-treated agricultural injuries. Journal of Agricultural Safety and Health 1:231-239.

Chatterjee, A, D Chattopadhyay, D Bhattacharya, Ak Dutta, and DN Sen Gupta. 1980. Some epidemiologic aspects of zoophilic dermatophytosis. International Journal of Zoonoses 7(1):19-33.

Cherry, JP, SH Fearirheller, TA Foglis, GJ Piazza, G Maerker, JH Woychik, and M Komanowski. 1992. Innovative uses of animal byproducts. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture. Washington, DC: USDA.

Crowley, M. 1995. Aquaculture trends and technology. National Fisherman 76:18-19.

Deere & Co. 1994. Farm and Ranch Safety Management. Moline, IL: Deere & Co.

DeFoliart, GR. 1992. Insects as human foods. Crop Protection 11:395-399.

Donham, KJ. 1985. Zoonotic diseases of occupational significance in agriculture: A review. International Journal of Zoonoses 12:163-191.

—. 1986. Hazardous agents in agricultural dusts and methods of evaluation. Am J Ind Med 10:205-220.

Donham, KJ and LW Knapp. 1982. Acute toxic exposure to gases from liquid manure. J Occup Med 24:142-145

Donham, KJ and SJ Reynolds. 1995. Respiratory dysfunction in swine production workers: Dose-response relationship of environmental exposures and pulmonary function. Am J Ind Med 27:405-418.

Donham, KJ and L Scallon. 1985. Characterization of dusts collected from swine confinement buildings. Am Ind Hyg Assoc J 46:658-661.

Donham, KJ and KM Thu. 1995. Agriculture medicine and enivronmental health: The missing component of the sustainable agricultural movement. In Agricultural health and safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock, and A Senthilselvan. Boca Raton, FL: CRC Press.

Donham, KJ, MJ Rubino, TD Thedell and J Kammenmeyer. 1977. Potential health hazards of workers in swine confinement buildings. J Occup Med 19:383-387.

Donham, KJ, J Yeggy, and RR Dauge. 1985. Chemical and physical parameters of liquid manure from swine confinement facilities: Health implications for workers, swine and the environment. Agricultural Wastes 14:97-113.

—. 1988. Production rates of toxic gases from liquid manure: Health implications for workers and animals in swine buildings. Bio Wastes 24:161-173.

Donham, KJ, DC Zavala, and JA Merchant. 1984. Acute effects of work environment on pulmonary functions of swine confinement workers. Am J Ind Med 5:367-375.

Dosman, JA, BL Graham, D Hall, P Pahwa, H McDuffie, M Lucewicz, and T To. 1988. Respiratory symptoms and alterations in pulmonary function tests in swine producers in Saskatchewan: Results of a survey of farmers. J Occ Med 30:715-720.

Douglas, JDM. 1995. Salmon farming: Occupational health in a new rural industry. Occup Med 45:89-92.

Douglas, JDM and AH Milne. 1991. Decompression sickness in fish farm workers: A new occupational hazard. Br Med J 302:1244-1245.

Durning, AT and HB Brough. 1992. Reforming the livestock economy. In State of the World, edited by LR Brown. London: WW Norton & Company.

Erlich, SM, TR Driscoll, JE Harrison, MS Frommer, and J Leight. 1993. Work-related agricultural fatalities in Australia, 1982-1984. Scand J Work Environ Health 19:162-167.

Feddes, JJR and EM Barber. 1994. Agricultural engineering solutions to problems of air contaminants in farm silos and animal buildings. In Agricultural Health and Safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock and A Senthilselvan. Boca Raton, FL: CRC Press.

Ferguson, IR and LRC Path. 1993. Rats, fish and Weil’s disease. Safety and Health Practitioner :12-16.

Food and Agriculture Organization (FAO) of the United Nations. 1965. Farm Implements for Arid and Tropical Regions. Rome: FAO.

—. 1995. The State of the World Fisheries and Aquaculture. Rome: FAO.

Fretz, P. 1989. Injuries from farm animals. In Principles of Health and Safety in Agriculture, edited by JA Dosman and DW Crockcroft. Boca Raton, FL: CRC Press.

Froehlich, PA. 1995. Engineering Control Observations and Recommendations for Insect Rearing Facilities. Cincinnati, OH: NIOSH.

Gillespie, JR. 1997. Modern Livestock and Poultry Production. New York: Delmar Publishers.

Gorhe, DS. 1983. Draught animal power vs mechanization. Asian Livestock VIII:90-91.

Haglind, M and R Rylander. 1987. Occupational exposure and lung function measurements among workers in swine confinement buildings. J Occup Med 29:904-907.

Harries, MG and O Cromwell. 1982.Occupational allergy caused by allergy to pig’s urine. Br Med J 284:867.

Heederick, D, R Brouwer, K Biersteker, and J. Boleij. Relationship of airborne endotoxin and bacteria levels in pig farms with lung function and respiratory symptoms of farmers. Intl Arch Occup Health 62:595-601.

Hogan, DJ and P Lane. 1986. Dermatologic disorders in agriculture. Occup Med: State Art Rev 1:285-300.

Holness, DL, EL O’Glenis, A Sass-Kortsak, C Pilger, and J Nethercott. 1987. Respiratory effects and dust exposures in hog confinement farming. Am J Ind Med 11:571-580.

Holness, DL and JR Nethercott. 1994. Acute and chronic trauma in hog farmers. In Agricultural Health and Safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock, and A Senthilselvan. Boca Raton, FL: CRC Press.

Iowa Department of Public Health. 1995. Sentinel Project Research Agricultural Injury Notification System. Des Moines, IA: Iowa Department of Public Health.

Iverson, M, R Dahl, J. Korsgaard, T Hallas, and EJ Jensen. 1988. Respiratory symptoms in Danish farmers: An epidemiological study of risk factors. Thorax 48:872-877.

Johnson, SA. 1982. Silkworms. Minneapolis, MN: Lerner Publications.

Jones, W, K Morring, SA Olenchock, T Williams, and J. Hickey. 1984. Environmental study of poultry confinement buildings. Am Ind Hyg Assoc J 45:760-766.

Joshi, DD. 1983. Draught animal power for food production in Nepal. Asian Livestock VIII:86-87.

Ker, A. 1995. Farming Systems in the African Savanna. Ottawa,Canada: IDRC Books.

Khan, MH. 1983. Animal as power source in Asian agriculture. Asian Livestock VIII:78-79.

Kiefer, M. 1996. Florida Department of Agriculture and Consumer Services Division of Plant Industry, Gainesville, Florida. Cincinnati, OH: NIOSH.

Knoblauch, A, B Steiner, S Bachmann, G Trachsler, R Burgheer, and J Osterwalder. 1996. Accidents related to manure in eastern Switzerland: An epidemiological study. Occup Environ Med 53:577-582.

Kok, R, K Lomaliza, and US Shivhare. 1988. The design and performance of an insect farm/chemical reactor for human food production. Canadian Agricultural Engineering 30:307-317.

Kuo, C and MCM Beveridge. 1990. Mariculture: Biological and management problems, and possible engineering solutions. In Engineering for Offshore Fish Farming. London: Thomas Telford.

Layde, PM, DL Nordstrom, D Stueland, LB Wittman, MA Follen, and KA Olsen. 1996. Animal-related occupational injuries in farm residents. Journal of Agricultural Safety and Health 2:27-37.

Leistikow, B Donham, JA Merchant, and S Leonard. 1989. Assessment of U.S. poultry worker respiratory risk. Am J Ind Med 17:73-74.

Lenhart, SW. 1984. Sources of respiratory insult in the poultry processing industry. Am J Ind Med 6:89-96.

Lincoln, JM and ML Klatt. 1994. Preventing Drownings of Commercial Fishermen. Anchorage, AK: NIOSH.

MacDiarmid, SC. 1993. Risk analysis and the importation of animals and animal products. Rev Sci Tech 12:1093-1107.

Marx, J, J Twiggs, B Ault, J Merchant, and E Fernandez-Caldas. 1993. Inhaled aeroallergen and storage mite reactivity in a Wisconsin farmer nested case-control study. Am Rev Respir Dis 147:354-358.

Mathias, CGT. 1989. Epidemiology of occupational skin disease in agriculture. In Principles of Health and Safety in Aagriculture, edited by JA Dosman and DW Cockroft. Boca Raton, FL: CRC Press.

Meadows, R. 1995. Livestock legacy. Environ Health Persp 103:1096-1100.

Meyers, JR. 1997. Injuries among Farm Workers in the United States, 1993. DHHS (NIOSH) Publication No. 97-115. Cincinnati, OH: NIOSH.

Mullan, RJ and LI Murthy. 1991. Occupational sentinel health events: An up-dated list for physician recognition and public health surveillance. Am J Ind Med 19:775-799.

National Institute for Occupational Safety and Health (NIOSH). 1993. Injuries among Farm Workers in the United states. Cincinnati, OH: NIOSH.

—. 1994. Request for Assistance in Preventing Organic Dust Toxic Syndrome. Washington, DC: GPO.

National Institutes of Health (NIH). 1988. Institutional Administrator’s Manual for Laboratory Animal Care and Use. Washington, DC: GPO.

National Research Council (NRC). 1989. Alternative Agriculture: Committee on the Role of Alternative Farming Methods in Modern Production Agriculture. Washington, DC: National Academy Press.

National Safety Council. 1982. Accident Facts. Chicago, IL: National Safety Council.

—. 1985. Electrofishing. NSC data sheet I-696-85. Chicago, IL: National Safety Council.

Nesheim, MC, RE Austic, and LE Card. 1979. Poultry Production. Philadelphia, PA: Lea and Febiger.

Olenchock, S, J May, D Pratt, L Piacitelli, and J Parker. 1990. Presence of endotoxins in different agricultural environments. Am J Ind Med 18:279-284.

O’Toole, C. 1995. Alien Empire. New York: Harper Collins Publishers.

Orlic, M and RA Leng. 1992. Prelimenary Proposal to Assist Bangladesh to Improve Ruminant Livestock Productivity and Reduce Methane Emissions. Washington, DC: US Environmental Protection Agency, Global Change Division.

Panti, NK and SP Clark. 1991. Transient hazardous conditions in animal building due to manure gas release during slurry mixing. Applied Engineering in Agriculture 7:478-484.

Platt, AE. 1995. Aquaculture boosts fish catch. In Vital Signs 1995: The Trends that Are Shaping our Future, edited by LR Brown, N Lenssen, and H Kane. New York: WW Norton & Company.

Pursel, VG, CE Rexroad, and RJ Wall. 1992. Barnyard biotchnology may soon produce new medical therapeutics. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture Washington, DC: USDA.

Ramaswami, NS and GL Narasimhan. 1982. A case for building up draught animal power. Kurushetra (India’s Journal for Rural Development) 30:4.

Reynolds, SJ, KJ Donham, P Whitten, JA Merchant, LF Burmeister, and WJ Popendorf. 1996. A longitudinal evaluation of dose-response relationships for environmental exposures and pulmonary function in swine production workers. Am J Ind Med 29:33-40.

Robertson, MH, IR Clarke, JD Coghlan, and ON Gill. 1981. Leptospirosis in trout farmers. Lancet: 2(8247)626-627.

Robertson, TD, SA Ribeiro, S Zodrow, and JV Breman. 1994. Assessment of Strategic Livestock Feed Supplementation as an Opportunity for Generating Income for Small Scale Dairy Producers and Reducing Methane Emissions in Bangladesh. Washington, DC: US Environmental Protection Agency.

Rylander, R. 1994. Symptoms and mechanisms: Inflammation of the lung. Am J Ind Med 25:19-24.

Rylander, R, KJ Donham, C Hjort, R Brouwer, and D Heederik. 1989. Effects of exposure to dust in swine confinement buildings: A working group report. Scand J Work Environ Health 15:309-312.

Rylander, R and N Essle. 1990. Bronchial hyperactivity among pig and dairy farmers. Am J Ind Med 17:66-69.

Rylander, R, Y Peterson, and KJ Donman. 1990. Questionnaire evaluating organic dust exposure. Am J Ind Med 17:121-128.

Rylander, R and R Jacobs. 1994. Organic Dusts: Exposure, Effects and Prevention. Chicago, IL: Lewis Publishing.
Safina, C. 1995. The world’s imperiled fish. Sci Am 272:46-53.

Scherf, BD. 1995. World Watch List for Domestic Animal Diversity. Rome: FAO.

Schmidt, MJ. 1997. Working elephants. Sci Am 279:82-87.

Schmidt, JO. 1992. Allergy to venomous insects. In The Hive and the Honey Bee, edited by JM Graham. Hamilton: DaDant & Sons.

Shumacher, MJ and NB Egen. 1995. Significance of Africanized bees on public health. Arch Int Med 155:2038-2043.

Sherson, D, I Hansen, and T Sigsgaard. 1989. Occupationally related respiratory symptoms in trout-processing workers. Allergy 44:336-341.

Stem, C, DD Joshi, and M Orlic. 1995. Reducing Methane Emissions from Ruminant Livestock: Nepal prefeasibility Study. Washington, DC: US Environmental Protection Agency, Global Change Division.

Sweeten, JM. 1995. Odor measurement technology and applications: A state-of-the-art review. In Seventh International Symposium on Agricultural and Food Processing Wastes: Proceedings of the 7th International Symposium, edited by CC Ross. American Society of Agricultural Engineering.

Tannahill, R. 1973. Food in History. New York: Stein and Day.

Thorne, PS, KJ Donham, J Dosman, P Jagielo, JA Merchant, and S Von Essen. 1996. Occupational health. In Understanding the Impacts of Large-scale Swine Production, edited by KM Thu, D Mcmillan, and J Venzke. Iowa City, IA: University of Iowa.

Turner, F and PJ Nichols. 1995. Role of the epithelium in the response of the airways. Abstract for the 19th Cotton and Other Organic Dust Research Conference, 6-7 January, San antonio, TX.

United Nations Development Programme (UNDP). 1996. Urban Agriculture: Food, Jobs, and Sustainable Cities. New York: UNDP.

US Department of Agriculture (USDA). 1992. Agricultural Waste Management Field Handbook. Washington, DC: USDA Soil Conservation Service.

—. 1996a. Livestock and Poultry: World Markets and Trade. Circular Series FL&P 1-96. Washington DC: USDA Foreign Agricultural Service.

—. 1996b. Dairy: World Markets and Trade. Circular Series FD 1-96. Washington DC: USDA Foreign Agricultural Service.

—. 1997. Poultry Production and Value, 1996 Summary. Washington, DC: National Agricultural Statistics Service.

van Hage-Hamsten, M, S Johansson, and S Hogland. 1985. Storage mite allergy is common in a farming population. Clin Allergy 15:555-564.

Vivian, J. 1986. Keeping Bees. Charlotte, VT: Williamson Publishing.

Waller, JA. 1992. Injuries to farmers and farm families in a dairy state. J Occup Med 34:414-421.

Yang, N. 1995. Research and development of buffalo draught power for farming in China. Asian Livestock XX:20-24.

Zhou, C and JM Roseman. 1995. Agriculture-related residual injuries: Prevalence, type, and associated factors among Alabama farm operators, 1990. Journal of Rural Health 11:251-258.

Zuehlke, RL, CF Mutel, and KJ Donham. 1980. Diseases of Agricultural Workers. Iowa City, IA: Department of Preventive Medicine and Environmental Health, University of Iowa.