Sunday, 27 February 2011 06:23

Non-Tyre Industrial Products

Rate this item
(0 votes)

Rubber products are made for countless applications, using processes similar to those described for tyre manufacturing. Non-tyre products, however, use a much greater variety of polymers and chemicals to give them the properties they need (see table 1). Compounds are carefully designed to reduce hazards such as dermatitis and nitrosamines in the factory and in products like surgical supplies, respirators and baby bottle nipples that are used in contact with the body. Often processing equipment is on a smaller scale than in tyre making, with more use of mill mixing. Roofing and landfill membranes are made on the largest calenders in the world. Some companies specialize in compounding rubber to the specifications of others who process it into many different kinds of products.

Reinforced products such as drive belts, air brake diaphragms and footwear are built up from calendered rubber, coated fabric or cord on a revolving drum or stationary form. Curing is usually by compression moulding to fix the final shape, sometimes using steam pressure and a bladder or airbag as with a tyre. More synthetic polymers are used in non-tyre products. They are not as sticky as natural rubber, so more solvent is used to clean and make the built-up layers tacky. Milling, calendering and solvents or adhesives are bypassed in some cases by going directly from the mixer to a cross-head extruder to build the product.

Non-reinforced products are formed and cured by transfer or injection moulding, extruded and cured in a hot air oven or formed in a compression mould from a pre-cut slug. Sponge rubber is made by agents in the compound that release gas when heated.

Rubber hose is built by braiding, knitting or spinning reinforcing cord or wire onto an extruded tube supported by air pressure or a solid mandrel, then extruding a cover tube over it. An extruded lead cover or nylon cross-wrap is then put on the hose for compression moulding and removed after curing, or else the hose is put into the pressurized steam vulcanizer bare. Nylon cross-wrap or extruded plastic are increasingly replacing the lead. Automotive curved hose is cut and pushed onto shaped mandrels for curing; in some cases robots are taking over this strenuous manual labour. A process also exists that uses chopped fibre for reinforcement and a movable die in the extruder to shape the hose.

Cements mixed from rubber and solvent are used to coat fabric for a host of products. Toluene, ethyl acetate and cyclohexane are common solvents. Fabric is dipped in thin cement, or rubber can be built up in increments of a few micrometres by applying thicker cement under a knife-edge over a roller. Curing is done on a continuous rotational vulcanizer or in an explosion-protected hot-air oven. Latex processes are being developed for coated fabrics to replace the cements.

Rubber cements are also commonly used as adhesives. Hexane, heptane, naphtha and 1,1,1-trichloroethane are common solvents for these products, but hexane is being replaced because of toxicity.

Latex is a typically very alkaline suspension of natural or synthetic rubber in water. Forms for gloves and balloons are dipped, or the latex compound can be foamed for carpet backing, extruded into an acetic acid coagulant solution and washed to produce thread, or spread on fabric. The product is dried and cured in an oven. Natural rubber latex is widely used in medical gloves and devices. Gloves are powdered with cornstarch, or treated in a chlorine solution to de-tackify the surface. Powder-free gloves are reportedly subject to spontaneous combustion when stored in large quantity in a hot area.

Hazards and Precautions

Rubber processing hazards include exposure to hot surfaces, pressurized steam, solvents, processing aids, curing fumes and noise. Dusting agents include stearates, talc, mica and cornstarch. The organic dusts are explosive. Finishing adds a variety of hazards such as punching, cutting, grinding, printing ink solvents and alkaline or acidic surface treatment washes.

For precautions, see the articles “Engineering Controls” and “Safety”  in this chapter.

Microwave, electron beam and ultrasonic vulcanization are being developed to generate heat within the rubber instead of transferring it inefficiently from outside to inside. The industry is working hard to eliminate or find safer substitutes for lead, dusting agents and volatile organic solvents and to improve compounds for better and safer properties in processing and use.

 

Back

Read 4997 times Last modified on Saturday, 30 July 2022 20:52

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Rubber Industry References

American Conference of Governmental Industrial Hygienists (ACGIH). 1995. Industrial Ventilation: A Manual of Recommended Practice, 22nd ed. Cincinnati: OH: ACGIH.

Andjelkovich, D, JD Taulbee, and MJ Symons. 1976. Mortality experience in a cohort of rubber workers, 1964–1973. J Occup Med 18:386–394.

Andjelkovich, D, H Abdelghany, RM Mathew, and S Blum. 1988. Lung cancer case-control study in a rubber manufacturing plant. Am J Ind Med 14:559–574.

Arp, EW, PH Wolf, and H Checkoway. 1983. Lymphocytic leukemia and exposures to benzene and other solvents in the rubber industry. J Occup Med 25:598–602.

Bernardinelli, L, RD Marco, and C Tinelli. 1987. Cancer mortality in an Italian rubber factory. Br J Ind Med 44:187–191.

Blum, S, EW Arp, AH Smith, and HA Tyroler. 1979. Stomach cancer among rubber workers: An epidemiologic investigation. In Dusts and Disease. Park Forest, IL: SOEH, Pathotox Publishers.

Checkoway, H, AH Smith, AJ McMichael, FS Jones, RR Monson, and HA Tyroler. 1981. A case-control study of bladder cancer in the U.S. tire industry. Br J Ind Med 38:240–246.

Checkoway, H, T Wilcosky, P Wolf, and H Tyroler. 1984. An evaluation of the associations of leukemia and rubber industry solvent exposures. Am J Ind Med 5:239–249.

Delzell, E and RR Monson. 1981a. Mortality among rubber workers. III. Cause-specific mortality 1940–1978. J Occup Med 23:677–684.

—. 1981b. Mortality among rubber workers. IV. General mortality patterns. J Occup Med 23:850–856.

Delzell, E, D Andjelkovich, and HA Tyroler. 1982. A case-control study of employment experience and lung cancer among rubber workers. Am J Ind Med 3:393–404.

Delzell, E, N Sathiakumar, M Hovinga, M Macaluso, J Julian, R Larson, P Cole, and DCF Muir. 1996. A follow-up study of synthetic rubber workers. Toxicology 113:182–189.

Fajen, J, RA Lunsford, and DR Roberts. 1993. Industrial exposure to 1,3-butadiene in monomer, polymer and end-user industries. In Butadiene and Styrene: Assessment of Health Hazards, edited by M Sorsa, K Peltonen, H Vainio and K Hemminki. Lyon: IARC Scientific Publications.

Fine, LJ and JM Peters. 1976a. Respiratory morbidity in rubber workers. I. Prevalence of respiratory symptoms and disease in curing workers. Arch Environ Health 31:5–9.

—. 1976b. Respiratory morbidity in rubber workers. II. Pulmonary function in curing workers. Arch Environ Health 31:10–14.

—. 1976c. Studies of respiratory morbidity in rubber workers. III. Respiratory morbidity in processing workers. Arch Environ Health 31:136–140.

Fine, LJ, JM Peters, WA Burgess, and LJ DiBerardinis. 1976. Studies of respiratory morbidity in rubber workers. IV. Respiratory morbidity in talc workers. Arch Environ Health 31:195–200.

Fox, AJ and PF Collier. 1976. A survey of occupational cancer in the rubber and cablemaking industries: Analysis of deaths occurring in 1972–74. Br J Ind Med 33:249–264.

Fox, AJ, DC Lindars, and R Owen. 1974. A survey of occupational cancer in the rubber and cablemaking industries: Results of a five-year analysis, 1967–71. Br J Ind Med 31:140–151.

Gamble, JF and R Spirtas. 1976. Job classification and utilization of complete work histories in occupational epidemiology. J Occup Med 18:399–404.

Goldsmith, D, AH Smith, and AJ McMichael. 1980. A case-control study of prostate cancer within a cohort of rubber and tire workers. J Occup Med 22:533–541.

Granata, KP and WS Marras. 1993. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. J Biomech 26:1429–1438.

Greek, BF. 1991. Rubber demand is expected to grow after 1991. C & EN (13 May): 37-54.

Gustavsson, P, C Hogstedt, and B Holmberg. 1986. Mortality and incidence of cancer among Swedish rubber workers. Scand J Work Environ Health 12:538–544.

International Agency for Research on Cancer (IARC). 1992. 1,3-Butadiene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Occupational Exposures to Mists and Vapours from Strong Inorganic Acids and Other Industrial Chemicals. Lyon: IARC.

International Institute of Synthetic Rubber Producers. 1994. Worldwide Rubber Statistics. Houston, TX: International Institute of Synthetic Rubber Producers.

Kilpikari, I. 1982. Mortality among male rubber workers in Finland. Arch Environ Health 37:295–299.

Kilpikari, I, E Pukkala, M Lehtonen, and M Hakama. 1982. Cancer incidence among Finnish rubber workers. Int Arch Occup Environ Health 51:65–71.

Lednar, WM, HA Tyroler, AJ McMichael, and CM Shy. 1977. The occupational determinants of chronic disabling pulmonary disease in rubber workers. J Occup Med 19:263–268.

Marras, WS and CM Sommerich. 1991. A three dimensional motion model of loads on the lumbar spine, Part I: Model structure. Hum Factors 33:123–137.

Marras, WS, SA Lavender, S Leurgans, S Rajulu, WG Allread, F Fathallah, and SA Ferguson. 1993. The role of dynamic three dimensional trunk motion in occupationally-related low back disorders: The effects of workplace factors, trunk position and trunk motion characteristics on injury. Spine 18:617–628.

Marras, WS, SA Lavender, S Leurgans, F Fathallah, WG Allread, SA Ferguson, and S Rajulu. 1995. Biomechanical risk factors for occupationally related low back disorder risk. Ergonomics 35:377–410.

McMichael, AJ, DA Andjelkovich, and HA Tyroler. 1976. Cancer mortality among rubber workers: An epidemiologic study. Ann NY Acad Sci 271:125–137.

McMichael, AJ, R Spirtas, and LL Kupper. 1974. An epidemiologic study of mortality within a cohort of rubber workers, 1964–72. J Occup Med 16:458–464.

McMichael, AJ, R Spirtas, LL Kupper, and JF Gamble. 1975. Solvent exposures and leukemia among rubber workers: An epidemiologic study. J Occup Med 17:234–239.

McMichael, AJ, R Spirtas, JF Gamble, and PM Tousey. 1976a. Mortality among rubber workers: Relationship to specific jobs. J Occup Med 18:178–185.

McMichael, AJ, WS Gerber, JF Gamble, and WM Lednar. 1976b. Chronic respiratory symptoms and job type within the rubber industry. J Occup Med 18:611–617.

Monson, RR and KK Nakano. 1976a. Mortality among rubber workers. I. White male union employees in Akron, Ohio. Am J Epidemiol 103:284–296.

—. 1976b. Mortality among rubber workers. II. Other employees. Am J Epidemiol 103:297–303.

Monson, RR and LJ Fine. 1978. Cancer mortality and morbidity among rubber workers. J Natl Cancer Inst 61:1047–1053.

National Fire Protection Association (NFPA). 1995. Standard for Ovens and Furnaces. NFPA 86. Quincy, MA: NFPA.

National Joint Industrial Council for the Rubber Manufacturing Industry. 1959. Running Nip Accidents. London: National Joint Industrial Council for the Rubber Manufacturing Industry.

—.1967. Safe Working of Calenders. London: National Joint Industrial Council for the Rubber Manufacturing Industry.

Negri, E, G Piolatto, E Pira, A Decarli, J Kaldor, and C LaVecchia. 1989. Cancer mortality in a northern Italian cohort of rubber workers. Br J Ind Med 46:624–628.

Norseth, T, A Anderson, and J Giltvedt. 1983. Cancer incidence in the rubber industry in Norway. Scand J Work Environ Health 9:69–71.

Nutt, A. 1976. Measurement of some potentially hazardous materials in the atmosphere of rubber factories. Environ Health Persp 17:117–123.

Parkes, HG, CA Veys, JAH Waterhouse, and A Peters. 1982. Cancer mortality in the British rubber industry. Br J Ind Med 39:209–220.

Peters, JM, RR Monson, WA Burgess, and LJ Fine. 1976. Occupational disease in the rubber industry. Environ Health Persp 17:31–34.

Solionova, LG and VB Smulevich. 1991. Mortality and cancer incidence in a cohort of rubber workers in Moscow. Scand J Work Environ Health 19:96–101.

Sorahan, R, HG Parkes, CA Veys, and JAH Waterhouse. 1986. Cancer mortality in the British rubber industry 1946–80. Br J Ind Med 43:363–373.

Sorahan, R, HG Parkes, CA Veys, JAH Waterhouse, JK Straughan, and A Nutt. 1989. Mortality in the British rubber industry 1946–85. Br J Ind Med 46:1–11.

Szeszenia-Daborowaska, N, U Wilezynska, T Kaczmarek, and W Szymezak. 1991. Cancer mortality among male workers in the Polish rubber industry. Polish Journal of Occupational Medicine and Environmental Health 4:149–157.

Van Ert, MD, EW Arp, RL Harris, MJ Symons, and TM Williams. 1980. Worker exposures to chemical agents in the manufacture of rubber tires: Solvent vapor studies. Am Ind Hyg Assoc J 41:212–219.

Wang, HW, XJ You, YH Qu, WF Wang, DA Wang, YM Long, and JA Ni. 1984. Investigation of cancer epidemiology and study of carcinogenic agents in the Shanghai rubber industry. Cancer Res 44:3101–3105.

Weiland, SK, KA Mundt, U Keil, B Kraemer, T Birk, M Person, AM Bucher, K Straif, J Schumann, and L Chambless. 1996. Cancer mortality among workers in the German rubber industry. Occup Environ Med 53:289–298.

Williams, TM, RL Harris, EW Arp, MJ Symons, and MD Van Ert. 1980. Worker exposure to chemical agents in the manufacture of rubber tires and tubes: Particulates. Am Ind Hyg Assoc J 41:204–211.

Wolf, PH, D Andjelkovich, A Smith, and H Tyroler. 1981. A case-control study of leukemia in the U.S. rubber industry. J Occup Med 23:103–108.

Zhang, ZF, SZ Yu, WX Li, and BCK Choi. 1989. Smoking, occupational exposure to rubber and lung cancer. Br J Ind Med 46:12–15.