Sunday, 27 February 2011 06:25

1,3-Butadine

Rate this item
(0 votes)

A colourless gas produced as a co-product in the manufacture of ethylene, 1,3-butadiene is used largely as a starting material in the manufacture of synthetic rubber (e.g., styrene-butadiene rubber (SBR) and polybutadiene rubber) and thermoplastic resins.

Health Effects

Animal studies. Inhaled butadiene is carcinogenic at multiple organ sites in rats and mice. In rats exposed to 0, 1,000, or 8,000 ppm butadiene for 2 years, increased tumour incidences and/or dose-response trends were observed in the exocrine pancreas, testis and brain of males and in the mammary gland, thyroid gland, uterus and Zymbal gland of females. Inhalation studies of butadiene in mice were conducted at exposures ranging from 6.25 to 1,250 ppm. Particularly noteworthy in mice were the induction of early malignant lymphomas and uncommon haemangiosarcomas of the heart. Malignant lung tumours were induced at all exposure concentrations. Other sites of tumour induction in mice included the liver, forestomach, Harderian gland, ovary, mammary gland and preputial gland. Non-neoplastic effects of butadiene exposure in mice included bone marrow toxicity, testicular atrophy, ovarian atrophy and developmental toxicity.

Butadiene is genotoxic to bone marrow cells of mice, but not rats, producing increases in sister chromatid exchanges, micronuclei and chromosomal aberrations. Butadiene is also mutagenic to Salmonella typhimurium in the presence of metabolic activation systems. The mutagenic activity of butadiene has been attributed to its metabolism to mutagenic (and carcinogenic) epoxide intermediates.

Human studies. Epidemiological studies have consistently found excess mortality from lymphatic and haematopoietic cancers associated with occupational exposure to butadiene. In the butadiene production industry, increases in lymphosarcomas in production workers were concentrated among men who were first employed before 1946. A case-control study of lymphatic and haematopoietic cancers in eight SBR facilities identified a strong association between leukaemia mortality and exposure to butadiene. Important characteristics of the leukaemia cases were that most were hired before 1960, worked in three of the plants and had been employed for at least 10 years in the industry. The International Agency for Research on Cancer (IARC) has classified as 1,3-butadiene probably carcinogenic to humans (IARC 1992).

A recent epidemiological study has provided data that confirm the excess in leukaemia mortality among SBR workers exposed to butadiene (Delzell et al. 1996). The site correspondence between lymphomas induced in mice exposed to butadiene and lymphatic and haematopoietic cancers associated with occupational exposure to butadiene is especially noteworthy. Furthermore, estimates of human cancer risk derived from data of butadiene-induced lymphomas in mice are similar to estimates of leukaemia risk determined from the new epidemiological data.

Industrial Exposure and Control

Surveys of exposure in industries where butadiene is produced and utilized were conducted by the US National Institute for Occupational Safety and Health (NIOSH) in the mid-1980s. Exposures were greater than 10 ppm in 4% of the samples and less than 1 ppm in 81% of the samples. Exposures were not homogeneous within specific job categories, and excursions as high as 370 ppm were measured. Exposures to butadiene were probably much higher during the Second World War, when the synthetic rubber industry was undergoing rapid growth. Limited sampling from rubber tyre and hose manufacture plants were below the limit of detection (0.005 ppm) (Fajen, Lunsford and Roberts 1993).

Exposures to butadiene can be reduced by ensuring that fittings on closed-loop systems are not worn or incorrectly connected. Further measures to control potential exposures include: use of closed-loop systems for cylinder sampling, use of dual mechanical seals to control release from leaking pumps, use of magnetic gauges to monitor rail-car filling operations and use of a laboratory hood for cylinder voiding.

 

Back

Read 5624 times Last modified on Saturday, 30 July 2022 20:53

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Rubber Industry References

American Conference of Governmental Industrial Hygienists (ACGIH). 1995. Industrial Ventilation: A Manual of Recommended Practice, 22nd ed. Cincinnati: OH: ACGIH.

Andjelkovich, D, JD Taulbee, and MJ Symons. 1976. Mortality experience in a cohort of rubber workers, 1964–1973. J Occup Med 18:386–394.

Andjelkovich, D, H Abdelghany, RM Mathew, and S Blum. 1988. Lung cancer case-control study in a rubber manufacturing plant. Am J Ind Med 14:559–574.

Arp, EW, PH Wolf, and H Checkoway. 1983. Lymphocytic leukemia and exposures to benzene and other solvents in the rubber industry. J Occup Med 25:598–602.

Bernardinelli, L, RD Marco, and C Tinelli. 1987. Cancer mortality in an Italian rubber factory. Br J Ind Med 44:187–191.

Blum, S, EW Arp, AH Smith, and HA Tyroler. 1979. Stomach cancer among rubber workers: An epidemiologic investigation. In Dusts and Disease. Park Forest, IL: SOEH, Pathotox Publishers.

Checkoway, H, AH Smith, AJ McMichael, FS Jones, RR Monson, and HA Tyroler. 1981. A case-control study of bladder cancer in the U.S. tire industry. Br J Ind Med 38:240–246.

Checkoway, H, T Wilcosky, P Wolf, and H Tyroler. 1984. An evaluation of the associations of leukemia and rubber industry solvent exposures. Am J Ind Med 5:239–249.

Delzell, E and RR Monson. 1981a. Mortality among rubber workers. III. Cause-specific mortality 1940–1978. J Occup Med 23:677–684.

—. 1981b. Mortality among rubber workers. IV. General mortality patterns. J Occup Med 23:850–856.

Delzell, E, D Andjelkovich, and HA Tyroler. 1982. A case-control study of employment experience and lung cancer among rubber workers. Am J Ind Med 3:393–404.

Delzell, E, N Sathiakumar, M Hovinga, M Macaluso, J Julian, R Larson, P Cole, and DCF Muir. 1996. A follow-up study of synthetic rubber workers. Toxicology 113:182–189.

Fajen, J, RA Lunsford, and DR Roberts. 1993. Industrial exposure to 1,3-butadiene in monomer, polymer and end-user industries. In Butadiene and Styrene: Assessment of Health Hazards, edited by M Sorsa, K Peltonen, H Vainio and K Hemminki. Lyon: IARC Scientific Publications.

Fine, LJ and JM Peters. 1976a. Respiratory morbidity in rubber workers. I. Prevalence of respiratory symptoms and disease in curing workers. Arch Environ Health 31:5–9.

—. 1976b. Respiratory morbidity in rubber workers. II. Pulmonary function in curing workers. Arch Environ Health 31:10–14.

—. 1976c. Studies of respiratory morbidity in rubber workers. III. Respiratory morbidity in processing workers. Arch Environ Health 31:136–140.

Fine, LJ, JM Peters, WA Burgess, and LJ DiBerardinis. 1976. Studies of respiratory morbidity in rubber workers. IV. Respiratory morbidity in talc workers. Arch Environ Health 31:195–200.

Fox, AJ and PF Collier. 1976. A survey of occupational cancer in the rubber and cablemaking industries: Analysis of deaths occurring in 1972–74. Br J Ind Med 33:249–264.

Fox, AJ, DC Lindars, and R Owen. 1974. A survey of occupational cancer in the rubber and cablemaking industries: Results of a five-year analysis, 1967–71. Br J Ind Med 31:140–151.

Gamble, JF and R Spirtas. 1976. Job classification and utilization of complete work histories in occupational epidemiology. J Occup Med 18:399–404.

Goldsmith, D, AH Smith, and AJ McMichael. 1980. A case-control study of prostate cancer within a cohort of rubber and tire workers. J Occup Med 22:533–541.

Granata, KP and WS Marras. 1993. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. J Biomech 26:1429–1438.

Greek, BF. 1991. Rubber demand is expected to grow after 1991. C & EN (13 May): 37-54.

Gustavsson, P, C Hogstedt, and B Holmberg. 1986. Mortality and incidence of cancer among Swedish rubber workers. Scand J Work Environ Health 12:538–544.

International Agency for Research on Cancer (IARC). 1992. 1,3-Butadiene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Occupational Exposures to Mists and Vapours from Strong Inorganic Acids and Other Industrial Chemicals. Lyon: IARC.

International Institute of Synthetic Rubber Producers. 1994. Worldwide Rubber Statistics. Houston, TX: International Institute of Synthetic Rubber Producers.

Kilpikari, I. 1982. Mortality among male rubber workers in Finland. Arch Environ Health 37:295–299.

Kilpikari, I, E Pukkala, M Lehtonen, and M Hakama. 1982. Cancer incidence among Finnish rubber workers. Int Arch Occup Environ Health 51:65–71.

Lednar, WM, HA Tyroler, AJ McMichael, and CM Shy. 1977. The occupational determinants of chronic disabling pulmonary disease in rubber workers. J Occup Med 19:263–268.

Marras, WS and CM Sommerich. 1991. A three dimensional motion model of loads on the lumbar spine, Part I: Model structure. Hum Factors 33:123–137.

Marras, WS, SA Lavender, S Leurgans, S Rajulu, WG Allread, F Fathallah, and SA Ferguson. 1993. The role of dynamic three dimensional trunk motion in occupationally-related low back disorders: The effects of workplace factors, trunk position and trunk motion characteristics on injury. Spine 18:617–628.

Marras, WS, SA Lavender, S Leurgans, F Fathallah, WG Allread, SA Ferguson, and S Rajulu. 1995. Biomechanical risk factors for occupationally related low back disorder risk. Ergonomics 35:377–410.

McMichael, AJ, DA Andjelkovich, and HA Tyroler. 1976. Cancer mortality among rubber workers: An epidemiologic study. Ann NY Acad Sci 271:125–137.

McMichael, AJ, R Spirtas, and LL Kupper. 1974. An epidemiologic study of mortality within a cohort of rubber workers, 1964–72. J Occup Med 16:458–464.

McMichael, AJ, R Spirtas, LL Kupper, and JF Gamble. 1975. Solvent exposures and leukemia among rubber workers: An epidemiologic study. J Occup Med 17:234–239.

McMichael, AJ, R Spirtas, JF Gamble, and PM Tousey. 1976a. Mortality among rubber workers: Relationship to specific jobs. J Occup Med 18:178–185.

McMichael, AJ, WS Gerber, JF Gamble, and WM Lednar. 1976b. Chronic respiratory symptoms and job type within the rubber industry. J Occup Med 18:611–617.

Monson, RR and KK Nakano. 1976a. Mortality among rubber workers. I. White male union employees in Akron, Ohio. Am J Epidemiol 103:284–296.

—. 1976b. Mortality among rubber workers. II. Other employees. Am J Epidemiol 103:297–303.

Monson, RR and LJ Fine. 1978. Cancer mortality and morbidity among rubber workers. J Natl Cancer Inst 61:1047–1053.

National Fire Protection Association (NFPA). 1995. Standard for Ovens and Furnaces. NFPA 86. Quincy, MA: NFPA.

National Joint Industrial Council for the Rubber Manufacturing Industry. 1959. Running Nip Accidents. London: National Joint Industrial Council for the Rubber Manufacturing Industry.

—.1967. Safe Working of Calenders. London: National Joint Industrial Council for the Rubber Manufacturing Industry.

Negri, E, G Piolatto, E Pira, A Decarli, J Kaldor, and C LaVecchia. 1989. Cancer mortality in a northern Italian cohort of rubber workers. Br J Ind Med 46:624–628.

Norseth, T, A Anderson, and J Giltvedt. 1983. Cancer incidence in the rubber industry in Norway. Scand J Work Environ Health 9:69–71.

Nutt, A. 1976. Measurement of some potentially hazardous materials in the atmosphere of rubber factories. Environ Health Persp 17:117–123.

Parkes, HG, CA Veys, JAH Waterhouse, and A Peters. 1982. Cancer mortality in the British rubber industry. Br J Ind Med 39:209–220.

Peters, JM, RR Monson, WA Burgess, and LJ Fine. 1976. Occupational disease in the rubber industry. Environ Health Persp 17:31–34.

Solionova, LG and VB Smulevich. 1991. Mortality and cancer incidence in a cohort of rubber workers in Moscow. Scand J Work Environ Health 19:96–101.

Sorahan, R, HG Parkes, CA Veys, and JAH Waterhouse. 1986. Cancer mortality in the British rubber industry 1946–80. Br J Ind Med 43:363–373.

Sorahan, R, HG Parkes, CA Veys, JAH Waterhouse, JK Straughan, and A Nutt. 1989. Mortality in the British rubber industry 1946–85. Br J Ind Med 46:1–11.

Szeszenia-Daborowaska, N, U Wilezynska, T Kaczmarek, and W Szymezak. 1991. Cancer mortality among male workers in the Polish rubber industry. Polish Journal of Occupational Medicine and Environmental Health 4:149–157.

Van Ert, MD, EW Arp, RL Harris, MJ Symons, and TM Williams. 1980. Worker exposures to chemical agents in the manufacture of rubber tires: Solvent vapor studies. Am Ind Hyg Assoc J 41:212–219.

Wang, HW, XJ You, YH Qu, WF Wang, DA Wang, YM Long, and JA Ni. 1984. Investigation of cancer epidemiology and study of carcinogenic agents in the Shanghai rubber industry. Cancer Res 44:3101–3105.

Weiland, SK, KA Mundt, U Keil, B Kraemer, T Birk, M Person, AM Bucher, K Straif, J Schumann, and L Chambless. 1996. Cancer mortality among workers in the German rubber industry. Occup Environ Med 53:289–298.

Williams, TM, RL Harris, EW Arp, MJ Symons, and MD Van Ert. 1980. Worker exposure to chemical agents in the manufacture of rubber tires and tubes: Particulates. Am Ind Hyg Assoc J 41:204–211.

Wolf, PH, D Andjelkovich, A Smith, and H Tyroler. 1981. A case-control study of leukemia in the U.S. rubber industry. J Occup Med 23:103–108.

Zhang, ZF, SZ Yu, WX Li, and BCK Choi. 1989. Smoking, occupational exposure to rubber and lung cancer. Br J Ind Med 46:12–15.