Sunday, 27 February 2011 06:36

Epidemiological Studies

Rate this item
(0 votes)

In the 1920s and 1930s, reports from the United Kingdom showed that rubber workers had higher death rates than did the general population, and that the excess deaths were from cancers. Thousands of different materials are used in manufacturing rubber products and which if any of these might be associated with the excess deaths in the industry was not known. Continued concern for the health of rubber workers led to joint company-union occupational health research programmes within the US rubber industry at Harvard University and at the University of North Carolina. The research programmes continued through the decade of the 1970s, after which they were supplanted by jointly sponsored company-union health surveillance and health maintenance programmes based, at least in part, on findings of the research effort.

Work in the Harvard research programme focused generally on mortality in the rubber industry (Monson and Nakano 1976a, 1976b; Delzell and Monson 1981a, 1981b; Monson and Fine 1978) and on respiratory morbidity among rubber workers (Fine and Peters 1976a, 1976b, 1976c; Fine et al. 1976). An overview of the Harvard research has been published (Peters et al. 1976).

The University of North Carolina group engaged in a combination of epidemiological and environmental research. The early efforts were primarily descriptive studies of rubber workers’ mortality experience and investigations of conditions of work (McMichael, Spirtas and Kupper 1974; McMichael et al. 1975; Andjelkovich, Taulbee and Symons 1976; Gamble and Spirtas 1976; Williams et al. 1980; Van Ert et al. 1980). The major focus, however, was in analytic studies on associations between work-related exposures and disease (McMichael et al. 1976a; McMichael et al. 1976b; McMichael, Andjelkovich and Tyroler 1976; Lednar et al. 1977; Blum et al. 1979; Goldsmith, Smith and McMichael 1980; Wolf et al. 1981; Checkoway et al. 1981; Symons et al. 1982; Delzell, Andjelkovich and Tyroler 1982; Arp, Wolf and Checkoway 1983; Checkoway et al. 1984; Andjelkovich et al. 1988). Noteworthy were findings regarding associations between exposures to hydrocarbon solvent vapours and cancers (McMichael et al. 1975; McMichael et al. 1976b; Wolf et al. 1981; Arp, Wolf and Checkoway 1983; Checkoway et al. 1984) and associations between exposures to airborne particulate materials and pulmonary disability (McMichael, Andjelkovich and Tyroler 1976; Lednar et al. 1977).

At the University of North Carolina, the initial analytic studies of leukaemia among rubber workers showed excess cases among workers who had a history of working in jobs in which solvents were used (McMichael et al. 1975). Exposure to benzene, a common solvent in the rubber industry many years ago, and a recognized cause of leukaemia, was immediately suspected. More detailed analyses, however, showed that the excess leukaemias were generally lymphocytic, while exposures to benzene had commonly been associated with the myeloblastic type (Wolf et al. 1981). It was surmised that some agent other than benzene could be involved. A very painstaking review of records of solvent use and solvent sources of supply for one large company showed that use of coal-based solvents, including both benzene and xylene, had a much stronger association with lymphocytic leukaemia than did use of petroleum-based solvents (Arp, Wolf and Checkoway 1983). Coal-based solvents are generally contaminated with polynuclear aromatic hydrocarbons, including compounds which have been shown to cause lymphocytic leukaemia in experimental animals. Further analyses in this study showed an even stronger association of lymphocytic leukaemia with exposures to carbon disulphide and carbon tetrachloride than with exposures to benzene (Checkoway et al. 1984). Exposures to benzene are hazardous, and exposures to benzene in workplaces should be eliminated or minimized to the extent possible. A conclusion, however, that eliminating benzene from use in rubber processes will eliminate future excesses of leukaemia, particularly of lymphocytic leukaemia, among rubber workers may be incorrect.

Special studies at the University of North Carolina of rubber workers who had taken disability retirement showed that disabling pulmonary disease, such as emphysema, was more likely to have occurred among people with a history of work in curing, curing preparation, finishing and inspection than among workers in other jobs (Lednar et al. 1977). All of these work areas involve exposures to dusts and fumes which can be inhaled. In these studies it was found that a history of smoking generally more than doubled the risk of pulmonary disability retirement, even in the dusty jobs which themselves were associated with disability.

Epidemiological studies were under way in the European and Asian rubber industries (Fox, Lindars and Owen 1974; Fox and Collier 1976; Nutt 1976; Parkes et al. 1982; Sorahan et al. 1986; Sorahan et al. 1989; Kilpikari et al. 1982; Kilpikari 1982; Bernardinelli, Marco and Tinelli 1987; Negri et al. 1989; Norseth, Anderson and Giltvedt 1983; Szeszenia-Daborowaska et al. 1991; Solionova and Smulevich 1991; Gustavsson, Hogstedt and Holmberg 1986; Wang et al. 1984; Zhang et al. 1989) at about the same time and continued after those of Harvard and the University of North Carolina in the United States. Findings of excess cancers at various sites were commonly reported. Several studies showed an excess of lung cancer (Fox, Lindars and Owen 1974; Fox and Collier 1976; Sorahan et al. 1989; Szeszenia-Daborowaska et al. 1991; Solionova and Smulevich 1991; Gustavsson, Hogstedt and Holmberg 1986; Wang et al. 1984), associated, in some cases, with a history of work in curing. This finding was duplicated in some studies in the United States (Monson and Nakano 1976a; Monson and Fine 1978) but not in others (Delzell, Andjelkovich and Tyroler 1982; Andjelkovich et al. 1988).

The mortality experience among a cohort of workers in the German rubber industry has been reported (Weiland et al. 1996). Mortality from all causes and from all cancers was significantly elevated in the cohort. Statistically significant excesses in mortality from lung cancer and from pleural cancer were identified. The excess of mortality from leukaemia among German rubber workers barely failed to reach statistical significance.

A case-control study of lymphatic and haematopoietic cancers in eight styrene-butadiene rubber (SBR) facilities identified a strong association between leukaemia mortality and exposure to butadiene. The IARC has concluded that 1,3-butadiene is probably carcinogenic to humans (IARC 1992). A more recent epidemiological study has provided data that confirm the excess in leukaemia mortality among SBR workers exposed to butadiene (Delzell et al. 1996).

Over the years, epidemiological studies among rubber workers have led to the identification of workplace hazards and to improvements in their control. The area of occupational epidemiological research in greatest need of improvement at this time is assessment of past exposures of study subjects. Progress is being made in both research techniques and in databases in this area. Although questions regarding causal associations remain, continued epidemiological progress will surely lead to continued improvements in control of exposures in the rubber industry and, consequently, to continued improvement in the health of rubber workers.

Acknowledgement: I would like to recognize the pioneering efforts of Peter Bommarito, former president of the United Rubber Workers Union, who was primarily responsible for causing research to be done in the US rubber industry in the 1970s and 1980s on the health of rubber workers.


Back

Read 5015 times Last modified on Tuesday, 28 June 2011 13:26

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Rubber Industry References

American Conference of Governmental Industrial Hygienists (ACGIH). 1995. Industrial Ventilation: A Manual of Recommended Practice, 22nd ed. Cincinnati: OH: ACGIH.

Andjelkovich, D, JD Taulbee, and MJ Symons. 1976. Mortality experience in a cohort of rubber workers, 1964–1973. J Occup Med 18:386–394.

Andjelkovich, D, H Abdelghany, RM Mathew, and S Blum. 1988. Lung cancer case-control study in a rubber manufacturing plant. Am J Ind Med 14:559–574.

Arp, EW, PH Wolf, and H Checkoway. 1983. Lymphocytic leukemia and exposures to benzene and other solvents in the rubber industry. J Occup Med 25:598–602.

Bernardinelli, L, RD Marco, and C Tinelli. 1987. Cancer mortality in an Italian rubber factory. Br J Ind Med 44:187–191.

Blum, S, EW Arp, AH Smith, and HA Tyroler. 1979. Stomach cancer among rubber workers: An epidemiologic investigation. In Dusts and Disease. Park Forest, IL: SOEH, Pathotox Publishers.

Checkoway, H, AH Smith, AJ McMichael, FS Jones, RR Monson, and HA Tyroler. 1981. A case-control study of bladder cancer in the U.S. tire industry. Br J Ind Med 38:240–246.

Checkoway, H, T Wilcosky, P Wolf, and H Tyroler. 1984. An evaluation of the associations of leukemia and rubber industry solvent exposures. Am J Ind Med 5:239–249.

Delzell, E and RR Monson. 1981a. Mortality among rubber workers. III. Cause-specific mortality 1940–1978. J Occup Med 23:677–684.

—. 1981b. Mortality among rubber workers. IV. General mortality patterns. J Occup Med 23:850–856.

Delzell, E, D Andjelkovich, and HA Tyroler. 1982. A case-control study of employment experience and lung cancer among rubber workers. Am J Ind Med 3:393–404.

Delzell, E, N Sathiakumar, M Hovinga, M Macaluso, J Julian, R Larson, P Cole, and DCF Muir. 1996. A follow-up study of synthetic rubber workers. Toxicology 113:182–189.

Fajen, J, RA Lunsford, and DR Roberts. 1993. Industrial exposure to 1,3-butadiene in monomer, polymer and end-user industries. In Butadiene and Styrene: Assessment of Health Hazards, edited by M Sorsa, K Peltonen, H Vainio and K Hemminki. Lyon: IARC Scientific Publications.

Fine, LJ and JM Peters. 1976a. Respiratory morbidity in rubber workers. I. Prevalence of respiratory symptoms and disease in curing workers. Arch Environ Health 31:5–9.

—. 1976b. Respiratory morbidity in rubber workers. II. Pulmonary function in curing workers. Arch Environ Health 31:10–14.

—. 1976c. Studies of respiratory morbidity in rubber workers. III. Respiratory morbidity in processing workers. Arch Environ Health 31:136–140.

Fine, LJ, JM Peters, WA Burgess, and LJ DiBerardinis. 1976. Studies of respiratory morbidity in rubber workers. IV. Respiratory morbidity in talc workers. Arch Environ Health 31:195–200.

Fox, AJ and PF Collier. 1976. A survey of occupational cancer in the rubber and cablemaking industries: Analysis of deaths occurring in 1972–74. Br J Ind Med 33:249–264.

Fox, AJ, DC Lindars, and R Owen. 1974. A survey of occupational cancer in the rubber and cablemaking industries: Results of a five-year analysis, 1967–71. Br J Ind Med 31:140–151.

Gamble, JF and R Spirtas. 1976. Job classification and utilization of complete work histories in occupational epidemiology. J Occup Med 18:399–404.

Goldsmith, D, AH Smith, and AJ McMichael. 1980. A case-control study of prostate cancer within a cohort of rubber and tire workers. J Occup Med 22:533–541.

Granata, KP and WS Marras. 1993. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. J Biomech 26:1429–1438.

Greek, BF. 1991. Rubber demand is expected to grow after 1991. C & EN (13 May): 37-54.

Gustavsson, P, C Hogstedt, and B Holmberg. 1986. Mortality and incidence of cancer among Swedish rubber workers. Scand J Work Environ Health 12:538–544.

International Agency for Research on Cancer (IARC). 1992. 1,3-Butadiene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Occupational Exposures to Mists and Vapours from Strong Inorganic Acids and Other Industrial Chemicals. Lyon: IARC.

International Institute of Synthetic Rubber Producers. 1994. Worldwide Rubber Statistics. Houston, TX: International Institute of Synthetic Rubber Producers.

Kilpikari, I. 1982. Mortality among male rubber workers in Finland. Arch Environ Health 37:295–299.

Kilpikari, I, E Pukkala, M Lehtonen, and M Hakama. 1982. Cancer incidence among Finnish rubber workers. Int Arch Occup Environ Health 51:65–71.

Lednar, WM, HA Tyroler, AJ McMichael, and CM Shy. 1977. The occupational determinants of chronic disabling pulmonary disease in rubber workers. J Occup Med 19:263–268.

Marras, WS and CM Sommerich. 1991. A three dimensional motion model of loads on the lumbar spine, Part I: Model structure. Hum Factors 33:123–137.

Marras, WS, SA Lavender, S Leurgans, S Rajulu, WG Allread, F Fathallah, and SA Ferguson. 1993. The role of dynamic three dimensional trunk motion in occupationally-related low back disorders: The effects of workplace factors, trunk position and trunk motion characteristics on injury. Spine 18:617–628.

Marras, WS, SA Lavender, S Leurgans, F Fathallah, WG Allread, SA Ferguson, and S Rajulu. 1995. Biomechanical risk factors for occupationally related low back disorder risk. Ergonomics 35:377–410.

McMichael, AJ, DA Andjelkovich, and HA Tyroler. 1976. Cancer mortality among rubber workers: An epidemiologic study. Ann NY Acad Sci 271:125–137.

McMichael, AJ, R Spirtas, and LL Kupper. 1974. An epidemiologic study of mortality within a cohort of rubber workers, 1964–72. J Occup Med 16:458–464.

McMichael, AJ, R Spirtas, LL Kupper, and JF Gamble. 1975. Solvent exposures and leukemia among rubber workers: An epidemiologic study. J Occup Med 17:234–239.

McMichael, AJ, R Spirtas, JF Gamble, and PM Tousey. 1976a. Mortality among rubber workers: Relationship to specific jobs. J Occup Med 18:178–185.

McMichael, AJ, WS Gerber, JF Gamble, and WM Lednar. 1976b. Chronic respiratory symptoms and job type within the rubber industry. J Occup Med 18:611–617.

Monson, RR and KK Nakano. 1976a. Mortality among rubber workers. I. White male union employees in Akron, Ohio. Am J Epidemiol 103:284–296.

—. 1976b. Mortality among rubber workers. II. Other employees. Am J Epidemiol 103:297–303.

Monson, RR and LJ Fine. 1978. Cancer mortality and morbidity among rubber workers. J Natl Cancer Inst 61:1047–1053.

National Fire Protection Association (NFPA). 1995. Standard for Ovens and Furnaces. NFPA 86. Quincy, MA: NFPA.

National Joint Industrial Council for the Rubber Manufacturing Industry. 1959. Running Nip Accidents. London: National Joint Industrial Council for the Rubber Manufacturing Industry.

—.1967. Safe Working of Calenders. London: National Joint Industrial Council for the Rubber Manufacturing Industry.

Negri, E, G Piolatto, E Pira, A Decarli, J Kaldor, and C LaVecchia. 1989. Cancer mortality in a northern Italian cohort of rubber workers. Br J Ind Med 46:624–628.

Norseth, T, A Anderson, and J Giltvedt. 1983. Cancer incidence in the rubber industry in Norway. Scand J Work Environ Health 9:69–71.

Nutt, A. 1976. Measurement of some potentially hazardous materials in the atmosphere of rubber factories. Environ Health Persp 17:117–123.

Parkes, HG, CA Veys, JAH Waterhouse, and A Peters. 1982. Cancer mortality in the British rubber industry. Br J Ind Med 39:209–220.

Peters, JM, RR Monson, WA Burgess, and LJ Fine. 1976. Occupational disease in the rubber industry. Environ Health Persp 17:31–34.

Solionova, LG and VB Smulevich. 1991. Mortality and cancer incidence in a cohort of rubber workers in Moscow. Scand J Work Environ Health 19:96–101.

Sorahan, R, HG Parkes, CA Veys, and JAH Waterhouse. 1986. Cancer mortality in the British rubber industry 1946–80. Br J Ind Med 43:363–373.

Sorahan, R, HG Parkes, CA Veys, JAH Waterhouse, JK Straughan, and A Nutt. 1989. Mortality in the British rubber industry 1946–85. Br J Ind Med 46:1–11.

Szeszenia-Daborowaska, N, U Wilezynska, T Kaczmarek, and W Szymezak. 1991. Cancer mortality among male workers in the Polish rubber industry. Polish Journal of Occupational Medicine and Environmental Health 4:149–157.

Van Ert, MD, EW Arp, RL Harris, MJ Symons, and TM Williams. 1980. Worker exposures to chemical agents in the manufacture of rubber tires: Solvent vapor studies. Am Ind Hyg Assoc J 41:212–219.

Wang, HW, XJ You, YH Qu, WF Wang, DA Wang, YM Long, and JA Ni. 1984. Investigation of cancer epidemiology and study of carcinogenic agents in the Shanghai rubber industry. Cancer Res 44:3101–3105.

Weiland, SK, KA Mundt, U Keil, B Kraemer, T Birk, M Person, AM Bucher, K Straif, J Schumann, and L Chambless. 1996. Cancer mortality among workers in the German rubber industry. Occup Environ Med 53:289–298.

Williams, TM, RL Harris, EW Arp, MJ Symons, and MD Van Ert. 1980. Worker exposure to chemical agents in the manufacture of rubber tires and tubes: Particulates. Am Ind Hyg Assoc J 41:204–211.

Wolf, PH, D Andjelkovich, A Smith, and H Tyroler. 1981. A case-control study of leukemia in the U.S. rubber industry. J Occup Med 23:103–108.

Zhang, ZF, SZ Yu, WX Li, and BCK Choi. 1989. Smoking, occupational exposure to rubber and lung cancer. Br J Ind Med 46:12–15.