Tuesday, 29 March 2011 19:36

Accidents in Clothing Manufacture

Rate this item
(0 votes)

Adapted from 3rd edition, Encyclopaedia of Occupational Health and Safety

Small enterprises in unsuitable domestic premises used for clothing manufacture often present a serious fire hazard. In any workroom, large or small, there is much combustible material, and combustible waste will accumulate unless very strict control is exercised. Some of the materials used are particularly flammable (e.g., foam resins used for lining and padding and fine particulate coir). Adequate means of escape, adequate fire extinguishers and training in procedures in case of fire are necessary. Maintenance and good housekeeping not only assist in preventing fires and limiting their spread, but are essential where goods are transported mechanically.

In general, the accident frequency and severity rates are low, but the trade produces a multiplicity of minor injuries that can be prevented from becoming more serious by immediate first aid. Band knives can cause serious wounds unless effectively protected; only that part of the knife necessarily exposed for cutting should be left unguarded; the circular knives of portable cutting machines should be similarly protected. If power presses are used, adequate machinery guarding, preferably fixed, is necessary to keep hands out of the danger area. The sewing machine presents two main hazards—the driving mechanisms and the needle. In many places, long lines of machines are still driven by underbench shafting. It is essential that this shafting be effectively guarded by enclosure or close railing; many entanglement accidents have occurred when workers stooped under benches to retrieve materials or to replace belts. Several different types of needle guard, which keep fingers out of the area of risk, are available.

The use of garment presses involves a serious risk of crushing and burning. Two-handed controls are widely used but are not entirely satisfactory: they may be subject to misuse (e.g., operation by the knee). They should always be set to make this impossible and to prevent operation by one hand. Guards which prevent the pressure head from closing on the buck if anything (most importantly, the hand) comes within the area are to be used. All presses, with their steam and pneumatic supplies, require frequent inspection.

All portable electrical power tools require careful maintenance of the earthing arrangements.

Recent developments in plastics welding (to replace seaming and so on) and in the making of foam backs usually involve the use of an electric press, sometimes operated by treadle, sometimes by compressed air. There is a risk of physical trapping between the electrodes and also of electrical burns from high-frequency current. The only sure safety measure is to enclose the dangerous parts so that the electrode cannot operate when the hand is in the danger area: double-handed control has not proved satisfactory. Seaming machines must incorporate built-in safety designs.



Read 5527 times Last modified on Wednesday, 29 June 2011 07:43

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."


Clothing and Finished Textile Products References

Alderson, M. 1986. Occupational Cancer. London: Butterworths.

Anderson, JH and O Gaardboe 1993. Musculoskeletal disorders of the neck and upper limb among sewing machine operators: A clinical investigation. Am J Ind Med 24:689–700.

Brisson, CB, A Vinet, N Vezina, and S Gingras. 1989. Effect of duration of employment in piecework on severe disability among female garment workers. Scand J Work Environ Health 15:329–334.

Decouflé, P, CC Murphy, CD Drews, and M Yeargin-Allsopp. 1993. Mental retardation in ten-year-old children in relation to their mothers’ occupations during pregnancy. Am J Ind Med 24:567–586.

Eskenazi, B, S Guendelman, EP Elkin, and M Jasis. 1993. A preliminary study of reproductive outcomes of female maquiladora workers in Tijuana, Mexico. Am J Ind Med 24:667–676.

Friedman-Jimenez, G. 1994. Adult onset asthma in women garment workers from the Bellevue Asthma Clinic. PA855. Am J Resp Crit Care Med 4:149.

Infante-Rivard, C, D Mur, B Armstrong, C Alvarez-Dardet, and F Bolumar. 1991. Acute lymphoblastic leukemia among Spanish children and mothers’ occupation: A case-control study. J Epidemiol Community Health 45:11-15.

Ng, TP, CY Hong, LG Goh, ML Wang, KT Koh, and SL Ling. 1994. Risks of asthma associated with occupations in a community-based case control study. Am J Ind Med 25:709–718.

Punnett, L, JM Robins, DH Wegman, and WM Keyserling. 1985. Soft tissue disorders in the upper limbs of female garment workers. Scand J Work Environ Health 11:417–425.

Redlich, CA, WS Beckett, J Sparer, KW Barwick, CA Reily, H Miller, SL Sigal, SL Shalat, and MR Cullen. 1988. Liver disease associated with occupational exposure to the solvent dimethyl fornamide. Ann Intern Med 108:680-686.

Schibye, B, T Skor, D Ekner, JU Christiansen, and G Sjogaard. 1995. Musculoskeletal symptoms among sewing machine operators. Scand J Work Environ Health 21:427–434.

Sobel, E, Z Davanipour, R Sulkava, T Erkinjuntti, J Wikström, VW Henderson, G Buckwalter, JD Bowman, and PJ Lee. 1995. Occupations with exposure to electromagnetic fields: A possible risk factor for Alzheimer’s disease. Am J Epidemiol 142:515–524.