Wednesday, 30 March 2011 02:26

Natural Felt Products

Rate this item
(0 votes)

Felt is a fibrous material made by interlocking fibres of fur, hair or wool through the application of heat, moisture, friction and other processes into an unwoven, densely matted fabric. There are also needleloom felts, in which the felt is attached to a loosely woven backing fabric, usually made of wool or jute.

Fur Felt Processing

Fur felt, used most frequently in hats, is usually made from the fur of rodents (e.g., rabbits, hares, muskrats, coypus and beavers), with other animals used less frequently. After sorting, the skins are carroted using hydrogen peroxide and sulphuric acid, and then the following processes are performed: cutting of hair, hardening and dyeing. For dyeing, synthetic dyestuffs are usually used (e.g., acid dyes or dyes containing complex metal compounds). The dyed felt is weighted using a shellac or vinyl polyacetate.

Wool Felt Processing

Wool used for felt manufacture may be unused or reclaimed. Jute, generally obtained from old sacks, is used for certain needlefelts, and other fibres such as cotton, silk and synthetic fibres may be added.

The wool is sorted and selected. To separate the fibres, it is ragged in a rag-grinding machine, a spiked cylinder that rotates and tears up the fabric, and then garnetted in a machine that has rollers and cylinders covered with fine saw-toothed wires. The fibres are carbonized in an 18% sulphuric acid solution and, after drying at a temperature of 100 ºC, they are blended and, when necessary, oiled with mineral oil with emulsifier. After teasing and carding, which further blends the fibres and arranges them more or less parallel to one another, the material is deposited on a moving belt as layers of a fine web that are wound up on poles to form batts. The loose batts are taken to the hardening room, where they are sprinkled with water and pressed between two heavy plates, the top one of which vibrates, causing the fibres to curl and cling together.

To complete the felting, the material is placed in bowls of dilute sulphuric acid and pounded by heavy wooden hammers. It is washed (with the addition of tetrachloroethylene), dewatered and dyed, usually with synthetic dyestuffs. Chemicals may be added to make the felt rot-resistant. The final steps include drying (at 65 °C for soft felts, 112 °C for hard felts), shearing, sanding, brushing, pressing and trimming.

Safety and Health Hazards

Accidents

The machines used in felt manufacturing have driving belts, chain and sprocket drives, rotating shafts, spiked drums and rollers used in garnetting and teasing, heavy presses, rollers and hammers, and so on, all of which must be properly guarded and have lockout/tagout systems to prevent injuries when they are being serviced or cleaned. Good housekeeping is also necessary to avoid slips and falls.

Noise

Many of the operations are noisy; when safe noise levels cannot be maintained by enclosures, baffles and proper lubrication, personal hearing protection must be made available. A hearing conservation programme featuring periodic audiograms is required in many countries.

Dust

Felt workplaces are dusty and are not recommended for persons with chronic respiratory diseases. While, fortunately, the dust is not associated with any specific disease, adequate exhaust ventilation is necessary. Animal hair can evoke allergic reactions in sensitive individuals, but bronchial asthma appears to be infrequent. Dust also can be a fire hazard.

Chemicals

The sulphuric acid solution used in felt making is usually dilute, but care is needed when diluting the supply of concentrated acid to the desired level. The danger of splashes and spills requires that eyewash facilities be nearby and that workers be fitted with protective clothing (e.g., goggles, aprons, gloves and shoes).

Tanning of certain papermakers’ felts may involve the use of quinone, which can cause severe damage to skin and mucous membranes. The dust or vapour of this compound can cause staining of the conjunctivae and cornea of the eye and, with prolonged or repeated exposures, may affect vision. Quinone powder should be dampened to prevent dusting, and it should be handled in enclosed hoods or chambers fitted with LEV, by workers fitted with hand, arm, face and eye protection.

Heat and fire

The high temperature of the material (60 °C) involved in the manual hat-shaping process dictates the use of hand skin protection by the workers.

Fire is a common hazard during the early, dusty stages of felt manufacture. It may be caused by matches or sparks from metallic objects left in the waste wool, hot-running bearings or faulty electrical connections. It may also occur in finishing operations, when vapours of flammable solvents may collect in the drying ovens. Because it damages the material and corrodes the equipment, water is less popular for fire extinguishing than dry-powder extinguishers. Modern equipment is fitted with vents through which the extinguishing material can be sprayed, or with an automatic carbon dioxide releasing device.

Anthrax

Although rare, cases of anthrax have occurred as a result of exposure to contaminated wool imported from areas where this bacillus is endemic.

 

Back

Read 3554 times Last modified on Wednesday, 29 June 2011 08:18

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Textile Goods Industry References

American Textile Reporter. 1969. (10 July).

Anthony, HM and GM Thomas. 1970. Tumors of the urinary bladder. J Natl Cancer Inst 45:879–95.

Arlidge, JT. 1892. The Hygiene, Diseases and Mortality of Occupations. London: Percival and Co.

Beck, GJ, CA Doyle, and EN Schachter. 1981. Smoking and lung function. Am Rev Resp Dis 123:149–155.

—. 1982. A longitudinal study of respiratory health in a rural community. Am Rev Resp Dis 125:375–381.

Beck, GJ, LR Maunder, and EN Schachter. 1984. Cotton dust and smoking effects on lung function in cotton textile workers. Am J Epidemiol 119:33–43.

Beck, GJ, EN Schachter, L Maunder, and A Bouhuys. 1981. The relation of lung function to subsequent employment and mortality in cotton textile workers. Chest suppl 79:26S–29S.

Bouhuys, A. 1974. Breathing. New York: Grune & Stratton.

Bouhuys, A, GJ Beck, and J Schoenberg. 1979. Epidemiology of environmental lung disease. Yale J Biol Med 52:191–210.

Bouhuys, A, CA Mitchell, RSF Schilling, and E Zuskin. 1973. A physiological study of byssinosis in colonial America. Trans New York Acad Sciences 35:537–546.

Bouhuys, A, JB Schoenberg, GJ Beck, and RSF Schilling. 1977. Epidemiology of chronic lung disease in a cotton mill community. Lung 154:167–186.

Britten, RH, JJ Bloomfield, and JC Goddard. 1933. Health of Workers in Textile Plants. Bulletin No. 207. Washington, DC: US Public Health Service.

Buiatti, E, A Barchielli, M Geddes, L Natasi, D Kriebel, M Franchini, and G Scarselli. 1984. Risk factors in male infertility. Arch Environ Health 39:266–270.

Doig, AT. 1949. Other lung diseases due to dust. Postgrad Med J 25:639–649.

Department of Labor (DOL). 1945. Special Bulletin No. 18. Washington, DC: DOL, Labor Standards Division.

Dubrow, R and DM Gute. 1988. Cause-specific mortality among male textile workers in Rhode Island. Am J Ind Med 13: 439–454.

Edwards, C, J Macartney, G Rooke, and F Ward. 1975. The pathology of the lung in byssinotics. Thorax 30:612–623.

Estlander, T. 1988. Allergic dermatoses and respiratory diseases from reactive dyes. Contact Dermat 18:290–297.

Eyeland, GM, GA Burkhart, TM Schnorr, FW Hornung, JM Fajen, and ST Lee. 1992. Effects of exposure to carbon disulphide on low density lipoprotein cholesterol concentration and diastolic blood pressure. Brit J Ind Med 49:287–293.

Fishwick, D, AM Fletcher, AC Pickering, R McNiven, and EB Faragher. 1996. Lung function in Lancashire cotton and man-made fibre spinning mill operatives. Occup Environ Med 53:46–50.

Forst, L and D Hryhorczuk. 1988. Occupational tarsal tunnel syndrome. Brit J Ind Med 45:277–278.

Fox, AJ, JBL Tombleson, A Watt, and AG Wilkie. 1973a. A survey of respiratory disease in cotton operatives: Part I. Symptoms and ventilation test results. Brit J Ind Med 30:42-47.

—. 1973b. A survey of respiratory disease in cotton operatives: Part II. Symptoms, dust estimation, and the effect of smoking habit. Brit J Ind Med 30:48-53.

Glindmeyer, HW, JJ Lefante, RN Jones, RJ Rando, HMA Kader, and H Weill. 1991. Exposure-related declines in the lung function of cotton textile workers. Am Rev Respir Dis 144:675–683.

Glindmeyer, HW, JJ Lefante, RN Jones, RJ Rando, and H Weill. 1994. Cotton dust and across-shift change in FEV1 Am J Respir Crit Care Med 149:584–590.

Goldberg, MS and G Theriault. 1994a. Retrospective cohort study of workers of a synthetic textiles plant in Quebec II. Am J Ind Med 25:909–922.

—. 1994b. Retrospective cohort study of workers of a synthetic textiles plant in Quebec I. Am J Ind Med 25:889–907.

Grund, N. 1995. Environmental considerations for textile printing products. Journal of the Society of Dyers and Colourists 111 (1/2):7–10.

Harris, TR, JA Merchant, KH Kilburn, and JD Hamilton. 1972. Byssinosis and respiratory diseases in cotton mill workers. J Occup Med 14: 199–206.

Henderson, V and PE Enterline. 1973. An unusual mortality experience in cotton textile workers. J Occup Med 15: 717–719.

Hernberg, S, T Partanen, and CH Nordman. 1970. Coronary heart disease among workers exposed to carbon disulphide. Brit J Ind Med 27:313–325.

McKerrow, CB and RSF Schilling. 1961. A pilot enquiry into byssinosis in two cotton mills in the United States. JAMA 177:850–853.

McKerrow, CB, SA Roach, JC Gilson, and RSF Schilling. 1962. The size of cotton dust particles causing byssinosis: An environmental and physiological study. Brit J Ind Med 19:1–8.

Merchant, JA and C Ortmeyer. 1981. Mortality of employees of two cotton mills in North Carolina. Chest suppl 79: 6S–11S.

Merchant, JA, JC Lumsdun, KH Kilburn, WM O’Fallon, JR Ujda, VH Germino, and JD Hamilton. 1973. Dose-response studies in cotton textile workers. J Occup Med 15:222–230.

Ministry of International Trade and Industry (Japan). 1996. Asia-Pacific Textile and Clothing Industry Form, June 3-4, 1996. Tokyo: Ministry of International Trade and Industry.

Molyneux, MKB and JBL Tombleson. 1970. An epidemiological study of respiratory symptoms in Lancashire mills, 1963–1966. Brit J Ind Med 27:225–234.

Moran, TJ. 1983. Emphysema and other chronic lung disease in textile workers: An 18-year autopsy study. Arch Environ Health 38:267–276.

Murray, R, J Dingwall-Fordyce, and RE Lane. 1957. An outbreak of weaver’s cough associated with tamarind seed powder. Brit J Ind Med 14:105–110.

Mustafa, KY, W Bos, and AS Lakha. 1979. Byssinosis in Tanzanian textile workers. Lung 157:39–44.

Myles, SM and AH Roberts. 1985. Hand injuries in the textile industry. J Hand Surg 10:293–296.

Neal, PA, R Schneiter, and BH Caminita. 1942. Report on acute illness among rural mattress makers using low grade, stained cotton. JAMA 119:1074–1082.

Occupational Safety and Health Administration (OSHA). 1985. Final Rule for Occupational Exposure to Cotton Dust. Federal Register 50, 51120-51179 (13 Dec. 1985). 29 CFR 1910.1043. Washington, DC: OSHA.

Parikh, JR. 1992. Byssinosis in developing countries. Brit J Ind Med 49:217–219.
Rachootin, P and J Olsen. 1983. The risk of infertility and delayed conception associated with exposures in the Danish workplace. J Occup Med 25:394–402.

Ramazzini, B. 1964. Diseases of Workers [De morbis artificum, 1713], translated by WC Wright. New York: Hafner Publishing Co.

Redlich, CA, WS Beckett, J Sparer, KW Barwick, CA Riely, H Miller, SL Sigal, SL Shalat, and MR Cullen. 1988. Liver disease associated with occupational exposure to the solvent dimethylformamide. Ann Int Med 108:680–686.

Riihimaki, V, H Kivisto, K Peltonen, E Helpio, and A Aitio. 1992. Assessment of exposures to carbon disulfide in viscose production workers from urinary 2-thiothiazolidine-4-carboxylic acid determinations. Am J Ind Med 22:85–97.

Roach, SA and RSF Schilling. 1960. A clinical and environmental study of byssinosis in the Lancashire cotton industry. Brit J Ind Med 17:1–9.

Rooke, GB. 1981a. The pathology of byssinosis. Chest suppl 79:67S–71S.

—. 1981b. Compensation for byssinosis in Great Britain. Chest suppl 79:124S–127S.

Sadhro, S, P Duhra, and IS Foulds. 1989. Occupational dermatitis from Synocril Red 3b liquid (CI Basic Red 22). Contact Dermat 21:316–320.

Schachter, EN, MC Kapp, GJ Beck, LR Maunder, and TJ Witek. 1989. Smoking and cotton dust effects in cotton textile workers. Chest 95: 997–1003.

Schilling, RSF. 1956. Byssinosis in cotton and other textile workers. Lancet 1:261–267, 319–324.

—. 1981. Worldwide problems of byssinosis. Chest suppl 79:3S–5S.

Schilling, RSF and N Goodman. 1951. Cardiovascular disease in cotton workers. Brit J Ind Med 8:77–87.

Seidenari, S, BM Mauzini, and P Danese. 1991. Contact sensitization to textile dyes: Description of 100 subjects. Contact Dermat 24:253–258.

Siemiatycki, J, R Dewar, L Nadon, and M Gerin. 1994. Occupational risk factors for bladder cancer. Am J Epidemiol 140:1061–1080.

Silverman, DJ, LI Levin, RN Hoover, and P Hartge. 1989. Occupational risks of bladder cancer in the United States. I. White men. J Natl Cancer Inst 81:1472–1480.

Steenland, K, C Burnett, and AM Osorio. 1987. A case control study of bladder cancer using city directories as a source of occupational data. Am J Epidemiol 126:247–257.

Sweetnam, PM, SWS Taylor, and PC Elwood. 1986. Exposure to carbon disulphide and ischemic heart disease in a viscose rayon factory. Brit J Ind Med 44:220–227.

Thomas, RE. 1991. Report on a multidisciplinary conference on control and prevention of cumulative trauma disorders (CDT) or repetitive motion trauma (RMT) in the textile, apparel and fiber industries. Am Ind Hyg Assoc J 52:A562.

Uragoda, CG. 1977. An investigation into the health of kapok workers. Brit J Ind Med 34:181–185.
Vigliani, EC, L Parmeggiani, and C Sassi. 1954. Studio de un epidemio di bronchite asmatica fra gli operi di una tessiture di cotone. Med Lau 45:349–378.

Vobecky, J, G Devroede, and J Caro. 1984. Risk of large-bowel cancer in synthetic fiber manufacture. Cancer 54:2537–2542.

Vobecky, J, G Devroede, J La Caille, and A Waiter. 1979. An occupational group with a high risk of large bowel cancer. Gastroenterology 76:657.

Wood, CH and SA Roach. 1964. Dust in cardrooms: A continuing problem in the cotton spinning industry. Brit J Ind Med 21:180–186.

Zuskin, E, D Ivankovic, EN Schachter, and TJ Witek. 1991. A ten year follow-up study of cotton textile workers. Am Rev Respir Dis 143:301–305.