Monday, 21 March 2011 15:24

Art Teaching

Rate this item
(0 votes)

Health and safety problems in art programmes can be similar in educational institutions ranging from junior high schools to universities. Arts programmes are a special problem because their hazards are not often recognized and, especially at the college level, can be semi-industrial in scale. Hazards can include inhalation of airborne contaminants; ingestion or dermal absorption of toxins; injury from machinery and tools; slips, trips and falls; and repetitive strain and other musculoskeletal injuries. Precautions include the provision of adequate ventilation (both dilution and local exhaust), the safe handling and storage of chemicals, machine-guarding and competent maintenance of machinery, efficient clean-up, good housekeeping and adjustable work stations. A key precaution in avoiding occupational safety and health problems of all kinds is adequate and mandatory training.

Elementary and Secondary School Teachers

Hazards at the elementary and secondary school levels include practices such as spraying and unsafe use of solvents and other chemicals and poor ventilation of processes. There is frequently a lack of proper equipment and sufficient knowledge of materials to ensure a safe workplace. Precautions include efficient engineering controls, better knowledge of materials, the elimination of hazardous art supplies from schools and substitution with safer ones (see table 1). This will help protect not only teachers, technicians, maintenance workers and administrators, but also students.

Table 1. Hazards and precautions for particular classes.

Class

Activity/Subject

Hazards

Precautions

Elementary Classes

Science

Animal handling

 

 

Plants

 

Chemicals

 

 

Equipment

 

Bites and scratches,

zoonoses, parasites

 

Allergies, poisonous plants

 

Skin and eye problems,

toxic reactions, allergies

 

Electrical hazards,

safety hazards

Allow only live, healthy animals. Handle animals with heavy gloves. Avoid

animals which can carry disease-transmitting insects and parasites.

 

Avoid plants which are known to be poisonous or cause allergic reaction.

 

Avoid using toxic chemicals with children. Wear proper personal protective

equipment when doing teacher demonstrations with toxic chemicals.

 

Follow standard electrical safety procedures. Ensure all equipment is properly

guarded. Store all equipment, tools, etc., properly.

 

Art

 

 

 

Painting and drawing

 

Photography

 

 

Textile and fibre arts

 

Printmaking

 

 

 

Woodworking

 

 

 

Ceramics

 

 

 

Pigments, solvents

 

Photochemicals

 

 

Dyes

 

Acids, solvents

 

Cutting tools

 

Tools

 

Glues

 

Silica, toxic metals, heat,

kiln fumes

Use only non-toxic art materials. Avoid solvents, acids, alkalis, spray cans, chemical dyes, etc.

 

Use only children’s paints. Do not use pastels, dry pigments.

 

Do not do photoprocessing. Send out film for developing or use Polaroid cameras

or blueprint paper and sunlight.

 

Avoid synthetic dyes; use natural dyes such as onion skins, tea, spinach, etc.

 

Use water-based block printing inks.

 

Use linoleum cuts instead of woodcuts.

 

Use soft woods and hand tools only.

 

Use water-based glues.

 

Use wet clay only, and wet mop.

Paint pottery rather than using ceramic glazes. Do not fire kiln inside classroom.

 

 

Secondary Classes

 

Chemistry

General

 

 

 

 

 

 

Organic chemistry

 

 

 

 

 

 

Inorganic chemistry

 

Analytical chemistry

 

Storage

 

 

 

 

 

 

 

Solvents

 

 

 

Peroxides and explosives

 

 

Acids and bases

 

Hydrogen sulphide

 

Incompatibilities

 

 

Flammability

All school laboratories should have the following: laboratory hood if toxic, volatile

chemicals are used; eyewash fountains; emergency showers (if concentrated

acids, bases or other corrosive chemicals are present); first aid kits; proper fire

extinguishers; protective goggles, gloves and lab coats; proper disposal

receptacles and procedures; spill control kit. Avoid carcinogens, mutagens and

highly toxic chemicals like mercury, lead, cadmium, chlorine gas, etc.

 

Use only in laboratory hood.

Use least toxic solvents.

Do semi-micro- or microscale experiments.

 

Do not use explosives or chemicals such as ether, which can form explosive

peroxides.

 

Avoid concentrated acids and bases when possible.

 

Do not use hydrogen sulphide. Use substitutes.

 

Avoid alphabetical storage, which can place incompatible chemicals in close

proximity. Store chemicals by compatible groups.

 

Store flammable and combustible liquids in approved flammable-storage

cabinets.

 

Biology

Dissection

 

 

Anaesthetizing insects

 

Drawing of blood

 

Microscopy

 

Culturing bacteria

Formaldehyde

 

 

Ether, cyanide

 

HIV, Hepatitis B

 

Stains

 

Pathogens

Do not dissect specimens preserved in formaldehyde. Use smaller, freeze-dried

animals, training films and videotapes, etc.

 

Use ethyl alcohol for anaesthetization of insects. Refrigerate insects for counting.

 

Avoid if possible. Use sterile lancets for blood typing under close supervision.

 

Avoid skin contact with iodine and gentian violet.

 

Use sterile technique with all bacteria, assuming there could be contamination by

pathogenic bacteria.

 

Physical sciences

Radioisotopes

 

 

Electricity and magnetism

 

Lasers

Ionizing radiation

 

 

Electrical hazards

 

 

Eye and skin damage,

electrical hazards

Use radioisotopes only in “exempt” quantities not requiring a license. Only trained

teachers should use these. Develop a radiation safety programme.

 

Follow standard electrical safety procedures.

 

 

Use only low-power (Class I) lasers. Never look directly into a laser beam or pass

the beam across face or body. Lasers should have a key lock.

 

Earth sciences

Geology

 

Water pollution

 

 

Atmosphere

 

 

Volcanoes

 

Solar observation

Flying chips

 

Infection, toxic chemicals

 

 

Mercury manometers

 

 

Ammonium dichromate

 

Infrared radiation

Crush rocks in canvas bag to prevent flying chips. Wear protective goggles.

 

Do not take sewage samples because of infection risk. Avoid hazardous

chemicals in field testing of water pollution.

 

Use oil or water manometers. If mercury manometers are used for demonstration,

have mercury spill control kit.

 

Do not use ammonium dichromate and magnesium to simulate volcanoes.

 

Never view sun directly with eyes or through lenses.

 

Art and Industrial Arts

All

 

 

Painting and drawing

 

 

Photography

 

 

Textile and fibre arts

General

 

 

Pigments, solvents

 

 

Photochemicals, acids,

sulphur dioxide

 

Dyes, dyeing assistants,

wax fumes

Avoid most dangerous chemicals and processes. Have proper ventilation. See

also precautions under Chemistry

 

Avoid lead and cadmium pigments. Avoid oil paints unless cleanup is done with

vegetable oil. Use spray fixatives outside.

 

Avoid colour processing and toning. Have dilution ventilation for darkroom. Have

eyewash fountain. Use water instead of acetic acid for stop bath.

 

Use aqueous liquid dyes or mix dyes in glove box. Avoid dichromate mordants.

Do not use solvents to remove wax in batik. Have ventilation if ironing out wax.

 

 

Papermaking

 

 

 

Printmaking

 

 

 

 

 

 

 

 

 

 

Woodworking

 

 

 

 

 

 

 

 

 

 

 

 

 

Ceramics

 

 

 

Sculpture

 

 

 

 

Jewelry

 

Alkali, beaters

 

 

 

Solvents

 

 

 

Acids, potassium chlorate

 

 

 

Dichromates

 

 

Woods and wood dust

 

 

 

Machinery and tools

 

Noise

 

Glues

 

 

Paints and finishes

 

 

Lead, silica, toxic metals, kiln fumes

 

 

Silica, plastics resins, dust

 

 

 

 

Soldering fumes, acids

Do not boil lye. Use rotten or mulched plant materials, or recycle paper and

cardboard. Use large blender instead of more dangerous industrial beaters to

prepare paper pulp.

 

Use water-based instead of solvent-based silk screen inks. Clean intaglio press

beds nd inking slabs with vegetable oil and dishwashing liquid instead of solvents.

Use cut paper stencils instead of lacquer stencils for silk screen printing.

 

Use ferric chloride to etch copper plates instead of Dutch mordant or nitric acid on

zinc plates. If using nitric acid etching, have emergency shower and eyewash

fountain and local exhaust ventilation.

 

Use diazo instead of dichromate photoemulsions. Use citric acid fountain

solutions in lithography to replace dichromates.

 

Have dust collection system for woodworking machines. Avoid irritating and

allergenic hardwoods, preserved woods (e.g., chromated copper arsenate

treated).Clean up wood dust to remove fire hazards.

 

Have machine guards. Have key locks and panic button.

 

Reduce noise levels or wear hearing protectors.

 

Use water-based glues when possible. Avoid formaldehyde/resorcinol glues,

solvent-based glues.

 

Use water-based paints and finishes. Use shellac based on ethyl alcohol rather

than methyl alcohol.

 

Purchase wet clay. Do not use lead glazes. Buy prepared glazes rather than

mixing dry glazes. Spray glazes only in spray booth. Fire kiln outside or have

local exhaust ventilation. Wear infrared goggles when looking into hot kiln.

 

Use only hand tools for stone sculpture to reduce dust levels. Do not use

sandstone, granite or soapstone, which might contain silica or asbestos. Do not

use highly toxic polyester, epoxy or polyurethane resins. Have ventilation if

heating plastics to remove decomposition products. Wet mop or vacuum dusts.

 

Avoid cadmium silver solders and fluoride fluxes. Use sodium hydrogen sulphate rather than sulphuric acid for pickling. Have local exhaust ventilation.

 

 

Enameling

 

 

Lost wax casting

 

 

 

Stained glass

 

 

Welding

 

 

 

Commercial art

Lead, burns, infrared

radiation

 

Metal fumes, silica,

infrared radiation, heat

 

 

Lead, acid fluxes

 

 

Metal fumes, ozone, nitrogen

dioxide, electrical and fire

hazards

 

Solvents, photochemicals,

video display terminals

Use only lead-free enamels. Ventilate enameling kiln. Have heat-protective

gloves and clothing, and infrared goggles.

 

Use 50/50 30-mesh sand/plaster instead of cristobalite investments. Have local

exhaust ventilation for wax burnout kiln and casting operation. Wear heat-pro

tective clothing and gloves.

 

Use copper foil technique rather than lead came. Use lead- and antimony-free

solders. Avoid lead glass paints. Use acid- and rosin-free soldering fluxes.

 

Do not weld metals coated with zinc, lead paints, or alloys with hazardous metals

(nickel, chromium, etc.). Weld only metals of known composition.

 

 

Use double-sided tape instead of rubber cement. Use heptane-based, not hexane

rubber cements. Have spray booths for air brushing. Use water-based or alcohol-

based permanent markers instead of xylene types.

See Photography section for photoprocesses.

Have proper ergonomic chairs, lighting, etc., for computers.

 

Performing Arts

Theatre

 

 

 

 

Dance

 

 

 

Music

Solvents, paints, welding

fumes, isocyanates, safety,

fire

 

 

Acute injuries

Repetitive strain injuries

 

 

Musculoskeletal injuries

(e.g., carpal tunnel syndrome)

 

Noise

 

 

 

Vocal strain

Use water-based paints and dyes. Do not use polyurethane spray foams.

Separate welding from other areas. Have safe rigging procedures. Avoid

pyrotechnics, firearms, fog and smoke, and other hazardous special effects.

Fireproof all stage scenery. Mark all trap doors, pits and elevations.

 

Have a proper dance floor. Avoid full schedules after period of inactivity. Assure

proper warm-up before and cool-down after dance activity. Allow sufficient

recovery time after injuries.

 

Use proper sized instruments. Have adequate instrument supports. Allow sufficient recovery time after injuries.

 

Keep sound levels at acceptable levels. Wear musician’s ear plugs if needed.

Position speakers to minimize noise levels. Use sound-absorbing materials on

walls.

 

Assure adequate warm-up. Provide proper vocal training and conditioning.

 

Automotive Mechanics

Brake drums

 

Degreasing

 

Car motors

 

Welding

 

Painting

Asbestos

 

Solvents

 

Carbon monoxide

 

 

 

Solvents, pigments

Do not clean brake drums unless approved equipment is used.

 

Use water-based detergents. Use parts cleaner

 

Have tailpipe exhaust.

 

See above.

 

Spray paint only in spray booth, or outdoors with respiratory protection.

 

 

Home Economics

Food and nutrition

Electrical hazards

 

Knives and other sharp

utensils

 

Fire and burns

 

 

Cleaning products

Follow standard electrical safety rules.

 

Always cut away from body. Keep knives sharpened.

 

 

Have stove hoods with grease filters that exhaust to outside. Wear protective

gloves with hot objects.

 

Wear goggles, gloves and apron with acidic or basic cleaning products.

 

 

College and University Teachers

Hazards at the college and university levels include, in addition to those mentioned above, the fact that students, teachers and technicians tend to be more experimental and tend to use more potentially dangerous materials and machinery. They also often work on a larger scale and for longer periods of time. Precautions must include education and training, the provision of engineering controls and personal protective equipment, written safety policies and procedures and insistence on compliance with these.

Artistic Freedom

Many art teachers and technicians are artists in their own right, resulting in multiple exposures to the hazards of art materials and processes which can significantly increase their health risks. When confronted with hazards in their field about which they have not known or which they have ignored, many teachers become defensive. Artists are experimental and frequently belong to an anti-establishment culture which encourages defiance of institutional rules. It is important, however, for the school administration to realize that the quest for artistic freedom is not a valid argument against working safely.

Liability and Training

In many jurisdictions teachers will be subject to both a personal and a school liability for the safety of their students, particularly the younger ones. “Because of the age, maturity, and experience limitations of most students, and because teachers stand in loco parentis (in the place of a parent), schools are expected to provide a safe environment and establish reasonable behaviour for the protection of students” (Qualley 1986).

Health and Safety Programmes

It is important that schools take the responsibility for training both art teachers and school administrators in the potential hazards of art materials and processes and in how to protect their students and themselves. A prudent school administration will ensure that there are in place written health and safety policies, procedures and programmes, compliance with these, regular safety training and a real interest in teaching how to create art safely.

 

Back

Read 5902 times Last modified on Wednesday, 29 June 2011 09:02

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Education and Training Services References

Abdo, R and H Chriske. 1990. HAV-Infektionsrisiken im Krankenhaus, Altenheim und Kindertagesstätten. In Arbeitsmedizin im Gesundheitsdienst, Bd. V, edited by F Hofmann and U Stößel. Stuttgart: Gentner Verlag.

Anderson, HA, LP Hanrahan, DN Higgins, and PG Sarow. 1992. A radiographic survey of public school building maintenance and custodial employees. Environ Res 59:159–66.

Clemens, R, F Hofmann, H Berthold, G Steinert et al. 1992. Prävalenz von Hepatitis A, B und C bei ewohern einer Einrichtung für geistig Behinderte. Sozialpädiatrie 14:357–364.

Herloff, B and B Jarvholm. 1989. Teachers, stress, and mortality. Lancet 1:159–160.

Lee, RJ, DR Van Orden, M Corn, and KS Crump. 1992. Exposure to airborne asbestos in buildings. Regul Toxicol Pharmacol 16: 93-107.

Morton, WE. 1995. Major differences in breast cancer risks among occupations. J Occup Med 37:328–335.

National Research Council. 1993. Prudent Practices in the Laboratory: Handling and Disposal of Chemicals. Washington, DC: National Academy Press.

Orloske, AJ and JS Leddo. 1981. Environmental effects on children’s hearing: How can school systems cope. J Sch Health 51:12–14.

Polis, M et al. 1986. Transmission of Giardia lamblia from a day care center to a community. Am J Public Hlth 76:1,142–1,144.

Qualley, CA. 1986. Safety in the Artroom. Worcester, MA: Davis Publications.

Regents Advisory Committee on Environmental Quality in Schools. 1994. Report to the New York State Board of Regents on the Environmental Quality of Schools. Albany: University of the State of New York, State Education Department.

Rosenman, KD. 1994. Causes of mortality in primary and secondary school teachers. Am J Indust Med 25:749–58.

Rossol, M. 1990. The Artist’s Complete Health and Safety Guide. New York: Allworth Press.

Rubin, CH, CA Burnett, WE Halperin, and PJ Seligman. 1993. Occupation as a risk identifier for breast cancer. Am J Public Health 83:1,311–1,315.

Savitz, DA. 1993. Overview of epidemiologic research on electric and magnetic fields and cancer. Am Ind Hyg Assoc J 54:197–204.

Silverstone, D. 1981. Considerations for listening and noise distractions. In Designing Learning Environments, edited by PJ Sleeman and DM Rockwell. New York: Longman, Inc.

Wolff, MS, PG Toniolo, EW Lee, M Rivera, and N Dubin. 1993. Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst 85:648–652.

Women’s Occupational Health Resource Center. 1987. Women’s Occupational Health Resource Center News 8(2): 3-4.