Monday, 28 March 2011 20:09

The Generation and Transport of Hazardous Wastes: Social and Ethical Issues

Rate this item
(0 votes)

Adapted from Soskolne 1997, with permission.

Hazardous wastes include, among other things, radioactive materials and chemicals. The movement of these substances from their source to other locations has been termed “toxic trade”. It was in the late 1980s that concern was raised about toxic trade, in particular with Africa (Vir 1989). This set the stage for the recently recognized issue of environmental justice, in some situations also known as environmental racism (Coughlin 1996).

Vir (1989) pointed out that as environmental safety laws became increasingly stringent in Europe and in the United States, and as the cost of disposal increased, “dumpers” or “waste merchants” began to turn their attention to poorer nations as potential and willing recipients of their waste products, providing a much needed source of revenue to these poorer countries. Some of these countries had been willing to take such waste at a fraction of the cost that developed nations would otherwise have had to pay for their disposal. To “nations that are drowning economically, this is an attractive deal” (Vir 1989).

Asante-Duah, Saccomanno and Shortreed (1992) show the exponential growth in the United States in the production of hazardous wastes since 1970, with the costs associated with treatment and disposal similarly increasing. They argue in favour of a controlled hazardous waste trade, one that is “regulated and informed”. They note that “countries generating small quantities of hazardous wastes should view the waste trade as an important economic option, as long as the waste recipients do not compromise their environmental sustainability”. Hazardous wastes will continue to be generated and there are countries for which an increase in some of these substances would not increase the risk to health of either present or future generations. It might therefore be economically efficient for such countries to accept waste.

There are others who argue that waste should be disposed of only at the source and not be transported at all (Puckett and Fogel 1994; Cray 1991; Southam News 1994). The latter argue from the position that science is incapable of providing any guarantees about the absence of risk.

One ethical principle that emerges from the foregoing argument is that of respect for autonomy (i.e., respect for persons), which also includes questions of national autonomy. The crucial question is one of the ability of a recipient country to adequately assess the level of risk associated with a shipment of hazardous waste. Assessment presupposes full disclosure of the contents of a shipment from the originating country and a level of local expertise to assess any potential impacts on the recipient country.

Because communities in developing countries are less likely to be informed about the potential risks associated with waste shipments, the NIMBY phenomenon (i.e., not in my backyard) so evident in the more affluent regions of the world is less likely to manifest in poorer regions. Furthermore, workers in developing regions of the world tend not to have the infrastructure related to worker protection, including information concerning the labelling of products with which they come into contact. Hence, workers in poorer nations involved in the management, storage and disposal of hazardous waste would lack the training to know how to protect themselves. Regardless of these ethical considerations, in the final analysis the economic benefits to be derived from accepting such waste shipments would need to be weighed against any potential harms that could arise in the short, medium and longer terms.

A second ethical principle emerging from the preceding argument is that of distributive justice, which involves question regarding who takes risks and who derives benefits. When there is an imbalance between those who take risks and those who derive benefits, the principle of distributive justice is not being honoured. It has often been financially poor labourers who have been exposed to hazards without any ability to enjoy the fruits of their efforts. This has occurred in the context of production of relatively expensive merchandise in the developing world for the benefit of first world markets. Another example related to the testing of new vaccines or drugs on people in developing countries who could never afford access to them in their own countries.

Towards Controlling the Transport of Hazardous Wastes

Because of the recognized need to better control the dumping of hazardous wastes, the Basel Convention was entered into by ministers of 33 countries in March 1989 (Asante-Duah, Saccomanno and Shortreed 1992). The Basel Convention addressed the transboundary movements of hazardous wastes and required the notification and consent of recipient countries before any waste shipments could take place.

Subsequently, the United Nations Environment Programme (UNEP) launched its Cleaner Production Programme, in close cooperation with governments and industry, to advocate low- and non-waste technologies (Rummel-Bulska 1993). In March 1994, a full ban was introduced on all transboundary movements of hazardous wastes from the 24 rich industrialized countries of the Organization for Economic Cooperation and Development (OECD) to other states that are not members of the OECD. The ban was immediate for wastes bound for final disposal and enters into force at the beginning of 1998 for all hazardous wastes that are said to be destined for recycling or recovery operations (Puckett and Fogel 1994). The countries most opposed to the introduction of a total ban were Australia, Canada, Japan and the United States. Despite this opposition from a handful of powerful industrial governments through the penultimate vote, the ban was finally agreed to by consensus (Puckett and Fogel 1994).

Greenpeace has stressed the primary prevention approach to solving the mounting waste crisis by addressing the root cause of the problem, namely minimizing waste generation through clean production technologies (Greenpeace 1994a). In making this point, Greenpeace identified major countries exporting hazardous wastes (Australia, Canada, Germany, the United Kingdom and the United States) and some countries importing them (Bangladesh, China (including Taiwan), India, Indonesia, Malaysia, Pakistan, the Philippines, the Republic of Korea, Sri Lanka and Thailand). In 1993, Canada, for example, had exported some 3.2 million kilograms of ash containing lead and zinc to India, the Republic of Korea and Taiwan, China, and 5.8 million kilograms of plastic waste to Hong Kong (Southam News 1994). Greenpeace (1993, 1994b) also addresses the extent of the problem in terms of specific substances and approaches to disposal.

Risk Assessment

Epidemiology is at the centre of human health risk assessment, which is invoked when concern is raised by a community about the consequences, if any, of exposure to hazardous and potentially toxic substances. The scientific method that epidemiology brings to the study of the environmental determinants of ill health can be fundamental to protecting unempowered communities, both from environmental hazards and from environmental degradation. Risk assessment conducted in advance of a shipment likely would fall into the legal trade arena; when conducted after a shipment has arrived, risk assessment would be undertaken to determine whether or not any health concerns were justified from what likely would have been an illegal shipment.

Among the concerns to the risk assessor would be hazard assessment, i.e., questions about what hazards, if any, exist and in what quantities and in what form they might be present. In addition, depending on the type of hazard, the risk assessor must make an exposure assessment to establish what possibilities there are for people to be exposed to the hazardous substance(s) through inhalation, skin absorption or ingestion (by contamination of the food chain or directly on foodstuffs).

In terms of trade, autonomy would require the informed consent of the parties in a voluntary and non-coercive milieu. However, it is hardly possible that non-coerciveness could ever pertain in such a circumstance by virtue of the financial need of an importing developing world country. The analogue here is the now accepted ethical guideline which does not permit the coercion of participants in research through payment for anything but direct costs (e.g., lost wages) for the time taken to participate in a study (CIOMS 1993). Other ethical issues involved here would include, on the one hand, truth in the presence of unknowns or in the presence of scientific uncertainty and, on the other hand, the principle of caveat emptor (buyer beware). The ethical principle of non-maleficence requires the doing of more good than harm. Here the short-term economic benefits of any trade agreement to accept toxic wastes must be weighed against the longer term damage to the environment, the public health and possibly also to future generations.

Finally, the principle of distributive justice requires recognition by the parties involved in a trade deal as to who would be deriving the benefits and who would be taking the risks in any trade deal. In the past, general practices for dumping waste and for locating hazardous waste sites in unempowered communities in the United States have led to the recognition of the concern now known as environmental justice or environmental racism (Coughlin 1996). In addition, questions of environmental sustainability and integrity have become central concerns in the public forum.

Acknowledgements: Dr. Margaret-Ann Armour, Department of Chemistry, University of Alberta, provided valuable references on the topic of toxic trade as well as materials from the November 1993 Pacific Basin “Conference on Hazardous Waste” at the University of Hawaii.

The Greenpeace office in Toronto, Ontario, Canada, was most helpful in providing copies of the Greenpeace references cited in this article.

 

Back

Read 8465 times Last modified on Wednesday, 29 June 2011 13:20
More in this category: « Waste Disposal Operations

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Public and Government Services References

American Conference of Governmental Industrial Hygienists (ACGIH). 1989. Guidelines for the Assessment of Bioaerosols in the Indoor Environment. Cincinnati, OH: ACGIH.

Angerer, J, B Heinzow, DO Reimann, W Knorz, and G Lehnert. 1992. Internal exposure to organic substances in a municipal waste incinerator. Int Arch Occup Environ Health; 64(4):265-273.

Asante-Duah, DK, FK Saccomanno, and JH Shortreed. 1992. The hazardous waste trade: Can it be controlled? Environ Sci Technol 26:1684-1693.

Beede, DE and DE Bloom. 1995. The economics of municipal solid waste. World Bank Research Observer. 10(2):113-115.

Belin, L. 1985. Health problems caused by actinomycetes and moulds in the industrial environment. Allergy Suppl. 40:24-29.

Bisesi, M and D Kudlinski. 1996. Measurement of airborne gram-negative bacteria in selected areas of a sludge dewatering building. Presented at the American Industrial Hygiene Conference and Exposition, 20-24 May, Washington, DC.

Botros, BA, AK Soliman, M Darwish, S el Said, JC Morrill, and TG Ksiazek. 1989. Seroprevalence of murine typhus and fievre boutonneuse in certain human populations in Egypt. J Trop Med Hyg. 92(6):373-378.

Bourdouxhe, M, E Cloutier, and S Guertin. 1992. Étude des risques d’accidents dans la collecte des ordures ménagères. Montreal: Institut de recherche en santé de la sécurité du travail.

Bresnitz, EA, J Roseman, D Becker, and E Gracely. 1992. Morbidity among municipal waste incinerator workers. Am J Ind Med 22 (3):363-378.

Brophy, M. 1991. Confined space entry programs. Water Pollution Control Federation Safety and Health Bulletin (Spring):4.

Brown, JE, D Masood, JI Couser, and R Patterson. 1995. Hypersensitivity pneumonitis from residential composting: residential composter’s lung. Ann Allergy, Asthma & Immunol 74:45-47.

Clark, CS, R Rylander, and L Larsson. 1983. Levels of gram-negative bacteria, aspergillus fumigatus, dust and endotoxin at compost plants. Appl Environ Microbiol 45:1501-1505.

Cobb, K and J Rosenfield. 1991. Municipal Compost Management Home Study Program. Ithaca, NY: Cornell Waste Management Institute.

Cointreau-Levine, SJ. 1994. Private Sector Participation in MSW Services in Developing Countries: The Formal Sector, Vol. 1. Washington, DC: World Bank.

Colombi, A. 1991. Health risks for waste disposal industry workers (in Italian). Med Lav 82(4):299-313.

Coughlin, SS. 1996. Environmental justice: The role of epidemiology in protecting unempowered communities from environmental hazards. Sci Total Environ 184:67-76.

Council for International Organizations of Medical Sciences (CIOMS). 1993. International Ethical Guidelines for Biomedical Research Involving Human Subjects. Geneva: CIOMS.

Cray, C. 1991. Waste Management Inc.: An Encyclopedia of Environmental Crimes and Other
Misdeeds, 3rd (revised) edition. Chicago, IL: Greenpeace USA.

Crook, B, P Bardos, and J Lacey. 1988. Domestic waste composting plants as source of airborne microorganisms. In Aerosols: Their Generation, Behavior and Application, edited by WD Griffiths. London: Aerosol Society.

Desbaumes, P. 1968. Study of risks inherent in industries treating refuse and sewage (in French). Rev Med Suisse Romande 88(2):131-136.

Ducel, G, JJ Pitteloud, C Rufener-Press, M Bahy, and P Rey. 1976. The importance of bacterial exposure in sanitation employees when collecting refuse (in French). Soz Praventivmed 21(4):136-138.

Dutch Occupational Health Association. 1989. Protocol Onderzoeksmethoden Micro-biologische Binnenlucht- verontreinigingen [Research Methods in Biological Indoor Air Pollution]. Working Group Report. The Hague, The Netherlands: Dutch Occupational Health Association.

Emery, R, D Sprau, YJ Lao, and W Pryor. 1992. Release of bacterial aerosols during infectious waste compaction: An initial hazard evaluation for healthcare workers. Am Ind Hyg Assoc J 53(5):339-345.

Gellin, GA and MR Zavon. 1970. Occupational dermatoses of solid waste workers. Arch Environ Health 20(4):510-515.

Greenpeace. 1993. We’ve Been Had! Montreal’s Plastics Dumped Overseas. Greenpeace International Toxic Trade Report. Washington, DC: Greenpeace Public Information.

—. 1994a. The Waste Invasion of Asia: A Greenpeace Inventory. Greenpeace Toxic Trade Report. Washington, DC: Greenpeace Public Information.

—. 1994b. Incineration. Greenpeace Inventory of Toxic Technologies. Washington, DC: Greenpeace Public Information.

Gustavsson, P. 1989. Mortality among workers at a municipal waste incinerator. Am J Ind Med 15(3):245-253.

Heida, H, F Bartman, and SC van der Zee. 1975. Occupational exposure and indoor air quality monitoring in a composting facility. Am Ind Hyg Assoc J 56(1): 39-43.

Johanning, E, E Olmsted, and C Yang. 1995. Medical issues related to municipal waste composting. Presented at the American Industrial Hygiene Conference and Exposition, 22-26 May, Kansas City, KS.

Knop W. 1975. Work safety in incinerator plants (in German) Zentralbl Arbeitsmed 25(1):15-19.

Kramer, MN, VP Kurup, and JN Fink. 1989. Allergic bronchopulmonary aspergillosis from a contaminated dump site. Am Rev Respir Dis 140:1086-1088.

Lacey, J, PAM Williamson, P King, and RP Barbos. 1990. Airborne Microorganisms Associated with Domestic Waste Composting. Stevenage, UK: Warren Spring Laboratory.

Lundholm, M and R Rylander. 1980. Occupational symptoms among compost workers. J Occup Med 22(4):256-257.

Malkin, R, P Brandt-Rauf, J Graziano, and M Parides. 1992. Blood lead levels in incinerator workers. Environ Res 59(1):265-270.

Malmros, P and P Jonsson. 1994. Wastes management: Planning for recycling workers’ safety. Waste Management & Resource Recovery 1:107-112.

Malmros, P, T Sigsgaard and B Bach. 1992. Occupational health problems due to garbage sorting. Waste Management & Research 10:227-234.

Mara, DD. 1974. Bacteriology for Sanitary Engineers. London: Churchill Livingstone.

Maxey, MN. 1978. Hazards of solid waste management: bioethical problems, principles, and priorities. Environ Health Perspect 27:223-230.

Millner, PD, SA Olenchock, E Epstein, R Rylander, J Haines, and J Walker. 1994. Bioaerosols associated with composting facilities. Compost Science and Utilization 2:3-55.

Mozzon, D, DA Brown, and JW Smith. 1987. Occupational exposure to airborne dust, respirable quartz and metals arising from refuse handling, burning and landfilling. Am Ind Hyg Assoc J 48(2):111-116.

Nersting, L, P Malmros, T Sigsgaard, and C Petersen. 1990. Biological health risk associated with resource recovery, sorting of recycle waste and composting. Grana 30:454-457.

Paull, JM and FS Rosenthal. 1987. Heat strain and heat stress for workers wearing protective suits at a hazardous waste site. Am Ind Hyg Assoc J 48(5):458-463.

Puckett, J and C Fogel 1994. A Victory for Environment and Justice: The Basel Ban and How It Happened. Washington, DC: Greenpeace Public Information.

Rahkonen, P, M Ettala, and I Loikkanen. 1987. Working conditions and hygiene at sanitary landfills in Finland. Ann Occup Hyg 31(4A):505-513.

Robazzi, ML, E Gir, TM Moriya, and J Pessuto. 1994. The trash collection service: Occupational risks versus damages to health (in Portuguese). Rev Esc Enferm USP 28(2):177-190.

Rosas, I, C Calderon, E Salinas, and J Lacey. 1996. Airborne microorganisms in a domestic waste transfer station. In Aerobiology, edited by M Muilenberg and H Burge. New York: Lewis Publishers.

Rummel-Bulska, I. 1993. The Basel Convention: A global approach for the management of hazardous wastes. Paper presented at the Pacific Basin Conference on Hazardous Waste, University of Hawaii, November.

Salvato, JA. 1992. Environmental Engineering and Sanitation. New York: John Wiley and Sons.

Schilling, CJ, IP Tams, RS Schilling, A Nevitt, CE Rossiter, and B Wilkinson. 1988. A survey into the respiratory effects of prolonged exposure to pulverised fuel ash. Br J Ind Med 45(12):810-817.

Shrivastava, DK, SS Kapre, K Cho, and YJ Cho. 1994. Acute lung disease after exposure to fly ash. Chest 106(1):309-311.

Sigsgaard, T, A Abel, L Donbk, and P Malmros. 1994. Lung function changes among recycling workers exposed to organic dust. Am J Ind Med 25:69-72.

Sigsgaard, T, B Bach, and P Malmros. 1990. Respiratory impairment among workers in a garbage-handling plant. Am J Ind Med 17(1):92-93.

Smith, RP. 1986. Toxic responses of the blood. In Casarett and Doull’s Toxicology, edited by CD Klaassen, MO Amdur, and J Doull. New York: Macmillan Publishing Company.

Soskolne, C. 1997. International transport of hazardous waste: Legal and illegal trade in the context of professional ethics. Global Bioethics (September/October).

Spinaci, S, W Arossa, G Forconi, A Arizio, and E Concina. 1981. Prevalence of functional bronchial obstruction and identification of groups at risk in a population of industrial workers (in Italian). Med Lav 72(3):214-221.

Southam News. 1994. Export ban on toxic waste proposed. Edmonton Journal (9 March):A12.

van der Werf, P. 1996. Bioaerosols at a Canadian composting facility. Biocycle (September): 78-83.
Vir, AK. 1989. Toxic trade with Africa. Environ Sci Technol 23:23-25.

Weber, S, G Kullman, E Petsonk, WG Jones, S Olenchock, and W Sorensen. 1993. Organic dust exposures from compost handling: Case presentation and respiratory exposure assessment. Am J Ind Med 24:365-374.

Wilkenfeld, C, M Cohen, SL Lansman, M Courtney, MR Dische, D Pertsemlidis, and LR Krakoff. 1992. Heart transplantation for end-stage cardiomyopathy caused by an occult pheochromocytoma. J Heart Lung Transplant 11:363-366.