Monday, 28 February 2011 21:34

Diseases Caused by Organic Dusts

Rate this item
(4 votes)

Organic Dust and Disease

Dusts of vegetable, animal and microbial origin have always been part of the human environment. When the first aquatic organisms moved to land some 450 million years ago, they soon developed defence systems against the many noxious substances present in the terrestrial environment, most of them of plant origin. Exposures to this environment usually cause no specific problems, even though plants contain a number of extremely toxic substances, particularly those present in or produced by moulds.

During the development of civilization, climatic conditions in some parts of the world necessitated certain activities to be undertaken indoors. Threshing in the Scandinavian countries was performed indoors during the winter, a practice mentioned by chroniclers in antiquity. The enclosure of dusty processes led to disease among the exposed persons, and one of the first published accounts of this is by the Danish bishop Olaus Magnus (1555, as cited by Rask-Andersen 1988). He described a disease among threshers in Scandinavia as follows:

“In separating the grain from the chaff, care must be taken to choose a time when there is a suitable wind which will sweep away the grain dust, so that it will not damage the vital organs of the threshers. This dust is so fine that it will almost unnoticeably penetrate into the mouth and accumulate in the throat. If this is not quickly dealt with by drinking fresh ale, the thresher may never again or only for a short period eat what he has threshed.”

With the introduction of machine processing of organic materials, treatment of large quantities of materials indoors with poor ventilation led to high levels of airborne dust. The descriptions by bishop Olaus Magnus and later by Ramazzini (1713) were followed by several reports on disease and organic dusts in the nineteenth century, particularly among cotton mill workers (Leach 1863; Prausnitz 1936). Later, the specific pulmonary disease common among farmers handling mouldy materials was also described (Campbell 1932).

During recent decades, a large number of reports on disease among persons exposed to organic dusts have been published. Initially, most of these were based on persons seeking medical help. The names of the diseases, when published, were often related to the particular environment where the disease was first recognized, and a bewildering array of names resulted, such as farmer’s lung, mushroom grower’s lung, brown lung and humidifier fever.

With the advent of modern epidemiology, more reliable figures were obtained for the incidence of occupational respiratory diseases related to organic dust (Rylander, Donham and Peterson 1986; Rylander and Peterson 1990). There was also advancement in the understanding of the pathological mechanisms underlying these diseases, particularly the inflammatory response (Henson and Murphy 1989). This paved the way for a more coherent picture of diseases caused by organic dusts (Rylander and Jacobs 1997).

The following will describe the different organic dust environments where disease has been reported, the disease entities themselves, the classical byssinosis disease and specific preventive measures.

Environments

Organic dusts are airborne particles of vegetable, animal or microbial origin. Table 1 lists examples of environments, work processes and agents involving the risk of exposure to organic dusts.


Table 1. Examples of sources of hazards of exposure to organic dust

Agriculture

Handling of grain, hay or other crops

Sugar-cane processing

Greenhouses

Silos

Animals

Swine/dairy confinement buildings

Poultry houses and processing plants

Laboratory animals, farm animals and pets

Waste-processing

Sewage water and silt

Household garbage

Composting

Industry

Vegetable fibre processing (cotton, flax, hemp, jute, sisal)

Fermentation

Timber and wood processing

Bakeries

Biotechnology processing

Buildings

Contaminated water in humidifiers

Microbial growth on structures or in ventilation ducts


Agents

It is now understood that the specific agents in the dusts are the major reason why disease develops. Organic dusts contain a multitude of agents with potential biological effects. Some of the major agents are found in table 2.


Table 2. Major agents in organic dusts with potential biological activity

Vegetable agents

Tannins

Histamine

Plicatic acid

Alkaloids (e.g., nicotine)

Cytochalasins

Animal agents

Proteins

Enzymes

Microbial agents

Endotoxins

(1→3)–β–D-glucans

Proteases

Mycotoxins


 

The relative role of each of these agents, alone or in combination with others, for the development of disease, is mostly unknown. Most of the information available relates to bacterial endotoxins which are present in all organic dusts.

Endotoxins are lipopolysaccharide compounds which are attached to the outer cell surface of Gram-negative bacteria. Endotoxin has a wide variety of biological properties. After inhalation it causes an acute inflammation (Snella and Rylander 1982; Brigham and Meyrick 1986). An influx of neutrophils (leukocytes) into the lung and the airways is the hallmark of this reaction. It is accompanied by activation of other cells and secretion of inflammatory mediators. After repeated exposures, the inflammation decreases (adaptation). The reaction is limited to the airway mucosa, and there is no extensive involvement of the lung parenchyma.

Another specific agent in organic dust is (1→3)-β-D-glucan. This is a polyglucose compound present in the cell wall structure of moulds and some bacteria. It enhances the inflammatory response caused by endotoxin and alters the function of inflammatory cells, particularly macrophages and T-cells (Di Luzio 1985; Fogelmark et al. 1992).

Other specific agents present in organic dusts are proteins, tannins, proteases and other enzymes, and toxins from moulds. Very little data are available on the concentrations of these agents in organic dusts. Several of the specific agents in organic dusts, such as proteins and enzymes, are allergens.

Diseases

The diseases caused by organic dusts are shown in table 3 with the corresponding International Classification of Disease (ICD) numbers (Rylander and Jacobs 1994).

 


Table 3. Diseases induced by organic dusts and their ICD codes

 

Bronchitis and pneumonitis (ICD J40)

Toxic pneumonitis (inhalation fever, organic dust toxic syndrome)

Airways inflammation (mucous membrane inflammation)

Chronic bronchitis (ICD J42)

Hypersensitivity pneumonitis (allergic alveolitis) (ICD J67)

Asthma (ICD J45)

Rhinitis, conjunctivitis

 


 

The primary route of exposure for organic dusts is by inhalation, and consequently the effects on the lung have received the major share of attention in research as well as in clinical work. There is, however, a growing body of evidence from published epidemiological studies and case reports as well as anecdotal reports, that systemic effects also occur. The mechanism involved seems to be a local inflammation at the target site, the lung, and a subsequent release of cytokines either with systemic effects (Dunn 1992; Michel et al. 1991) or an effect on the epithelium in the gut (Axmacher et al. 1991). Non-respiratory clinical effects are fever, joint pains, neurosensory effects, skin problems, intestinal disease, fatigue and headache.

The different disease entities as described in table 3 are easy to diagnose in typical cases, and the underlying pathology is distinctly different. In real life, however, a worker who has a disease due to organic dust exposure, often presents a mixture of the different disease entities. One person may have airways inflammation for a number of years, suddenly develop asthma and in addition have symptoms of toxic pneumonitis during a particularly heavy exposure. Another person may have subclinical hypersensitivity pneumonitis with lymphocytosis in the airways and develop toxic pneumonitis during a particularly heavy exposure.

A good example of the mixture of disease entities that may appear is byssinosis. This disease was first described in the cotton mills, but the individual disease entities are also found in other organic dust environments. An overview of the disease follows.

Byssinosis

The disease

Byssinosis was first described in the 1800s, and a classic report involving clinical as well as experimental work was given by Prausnitz (1936). He described the symptoms among cotton mill workers as follows:

“After working for years without any appreciable trouble except a little cough, cotton mill workers notice either a sudden aggravation of their cough, which becomes dry and exceedingly irritating¼ These attacks usually occur on Mondays ¼ but gradually the symptoms begin to spread over the ensuing days of the week; in time the difference disappears and they suffer continuously.”

The first epidemiological investigations were performed in England in the 1950s (Schilling et al. 1955; Schilling 1956). The initial diagnosis was based on the appearance of a typical Monday morning chest tightness, diagnosed using a questionnaire (Roach and Schilling 1960). A scheme for grading the severity of byssinosis based on the type and periodicity of symptoms was developed (Mekky, Roach and Schilling 1967; Schilling et al. 1955). Duration of exposure was used as a measure of dose and this was related to the severity of the response. Based on clinical interviews of large numbers of workers, this grading scheme was later modified to more accurately reflect the time intervals for the decrease in FEV1 (Berry et al. 1973).

In one study, a difference in the prevalence of byssinosis in mills processing different types of cotton was found (Jones et al. 1979). Mills using high-quality cotton to produce finer yarns had a lower prevalence of byssinosis than mills producing coarse yarns and using a lower quality of cotton. Thus in addition to exposure intensity and duration, both dose-related variables, the type of dust became an important variable for assessing exposure. Later it was demonstrated that the differences in the response of workers exposed to coarse and medium cottons was dependent not only on the type of cotton but on other variables that affect exposure, including: processing variables such as carding speed, environmental variables such as humidification and ventilation, and manufacturing variables such as different yarn treatments (Berry et al. 1973).

The next refinement of the relationship between exposure to cotton dust and a response (either symptoms or objective measures of pulmonary function), was the studies from the United States, comparing those who worked in 100% cotton to workers using the same cotton but in a 50:50 blend with synthetics and workers without exposure to cotton (Merchant et al. 1973). Workers exposed to 100% cotton had the highest prevalence of byssinosis independent of cigarette smoking, one of the confounders of exposure to cotton dust. This semiquantitative relationship between dose and response to cotton dust was further refined in a group of textile workers stratified by sex, smoking, work area and mill type. A relationship was observed in each of these categories between dust concentration in the lower dust ranges and byssinosis prevalence and/or change in forced expiratory volume in one second (FEV1).

In later investigations, the FEV1 decrease over the work shift has been used to assess the effects of exposure, and it is also a part of the US Cotton Dust Standard.

Byssinosis was long regarded as a peculiar disease with a mixture of different symptoms and no knowledge of the specific pathology. Some authors suggested that it was an occupational asthma (Bouhuys 1976). A workgroup meeting in 1987 analysed the symptomatology and pathology of the disease (Rylander et al. 1987). It was agreed that the disease comprised several clinical entities, generally related to organic dust exposure.

Toxic pneumonitis may appear the first time an employee works in the mill, particularly when working in the opening, blowing and carding sections (Trice 1940). Although habituation develops, the symptoms may reappear after an unusually heavy exposure later on.

Airways inflammation is the most widespread disease, and it appears at different degrees of severity from light irritation in the nose and airways to severe dry cough and breathing difficulties. The inflammation causes constriction of airways and a reduced FEV1. Airway responsiveness is increased as measured with a methacholine or histamine challenge test. It has been discussed whether airways inflammation should be accepted as a disease entity by itself or whether it merely represents a symptom. As the clinical findings in terms of severe cough with airways narrowing can lead to a decrease in work ability, it is justified to regard it as an occupational disease.

Continued airways inflammation over several years may develop into chronic bronchitis, particularly among heavily exposed workers in the blowing and carding areas. The clinical picture would be one of chronic obstructive pulmonary disease (COPD).

Occupational asthma develops in a small percentage of the workforce, but is usually not diagnosed in cross-sectional studies as the workers are forced to leave work because of the disease. Hypersensitivity pneumonitis has not been detected in any of the epidemiological studies undertaken, nor have there been case reports relating to cotton dust exposure. The absence of hypersensitivity pneumonitis may be due to the relatively low amount of moulds in cotton, as mouldy cotton is not acceptable for processing.

A subjective feeling of chest tightness, most common on Mondays, is the classical symptom of cotton dust exposure (Schilling et al. 1955). It is not, however, a feature unique to cotton dust exposure as it appears also among persons working with other kinds of organic dusts (Donham et al. 1989). Chest tightness develops slowly over a number of years but it can also be induced in previously unexposed persons, provided that the dose level is high (Haglind and Rylander 1984). The presence of chest tightness is not directly related to a decrease in FEV1.

The pathology behind chest tightness has not been explained. It has been suggested that the symptoms are due to an increased adhesiveness of platelets which accumulate in the lung capillaries and increase the pulmonary artery pressure. It is likely that chest tightness involves some kind of cell sensitization, as it takes repeated exposures for the symptom to develop. This hypothesis is supported by results from studies on blood monocytes from cotton workers (Beijer et al. 1990). A higher ability to produce procoagulant factor, indicative of cell sensitization, was found among cotton workers as compared to controls.

The environment

The disease was originally described among workers in cotton, flax and soft hemp mills. In the first phase of cotton treatment within the mills—bale opening, blowing and carding—more than half of the workers may have symptoms of chest tightness and airways inflammation. The incidence decreases as the cotton is processed, reflecting the successive cleaning of the causative agent from the fibre. Byssinosis has been described in all countries where investigations in cotton mills have been performed. Some countries like Australia have, however, unusually low incidence figures (Gun et al. 1983).

There is now uniform evidence that bacterial endotoxins are the causative agent for toxic pneumonitis and airways inflammation (Castellan et al. 1987; Pernis et al. 1961; Rylander, Haglind and Lundholm 1985; Rylander and Haglind 1986; Herbert et al. 1992; Sigsgaard et al. 1992). Dose-response relationships have been described and the typical symptoms have been induced by inhalation of purified endotoxin (Rylander et al. 1989; Michel et al. 1995). Although this does not exclude the possibility that other agents could contribute to the pathogenesis, endotoxins can serve as markers for disease risk. It is unlikely that endotoxins are related to the development of occupational asthma, but they could act as an adjuvant for potential allergens in cotton dust.

The case

The diagnosis of byssinosis is classically made using questionnaires with the specific question “Does your chest feel tight, and if so, on which day of the week?”. Persons with Monday morning chest tightness are classified as byssinotics according to a scheme suggested by Schilling (1956). Spirometry can be performed, and, according to the different combinations of chest tightness and decrease in FEV1, the diagnostic scheme illustrated in table 4 has evolved.

 


Table 4. Diagnostic criteria for byssinosis

 

Grade ½.          Chest tightness on the first day of some working weeks

Grade 1.          Chest tightness on the first day of every working week

Grade 2.          Chest tightness on the first and other days of the working week

Grade 3.          Grade 2 symptoms accompanied by evidence of permanent incapacity in the form of diminished effort intolerance and/or reduced ventilatory capacity

 


 

Treatment

Treatment in the light stages of byssinosis is symptomatic, and most of the workers learn to live with the slight chest tightness and bronchoconstriction that they experience on Mondays or when cleaning machinery or carrying out similar tasks with a higher than normal exposure. More advanced stages of airways inflammation or regular chest tightness several days of the week require transfer to less dusty operations. The presence of occupational asthma mostly requires work change.

Prevention

Prevention in general is dealt with in detail elsewhere in the Encyclopaedia. The basic principles for prevention in terms of product substitute, exposure limitation, worker protection and screening for disease apply also for cotton dust exposure.

Regarding product substitutes, it has been suggested that cotton with a low level of bacterial contamination be used. An inverse proof of this concept is found in reports from 1863 where the change to dirty cotton provoked an increase in the prevalence of symptoms among the exposed workers (Leach 1863). There is also the possibility of changing to other fibres, particularly synthetic fibres, although this is not always feasible from a product point of view. There is at present no production-applied technique to decrease the endotoxin content of cotton fibres.

Regarding dust reduction, successful programmes have been implemented in the United States and elsewhere (Jacobs 1987). Such programmes are expensive, and the costs for highly efficient dust removal may be prohibitive for developing countries (Corn 1987).

Regarding exposure control, the level of dust is not a sufficiently precise measure of exposure risk. Depending on the degree of contamination with Gram-negative bacteria and thus endotoxin, a given dust level may or may not be associated with a risk. For endotoxins, no official guidelines have been established. It has been suggested that a level of 200 ng/m3 is the threshold for toxic pneumonitis, 100 to 200 ng/m3 for acute airways constriction over the workshift and 10 ng/m3 for airways inflammation (Rylander and Jacobs 1997).

Knowledge about the risk factors and the consequences of exposure are important for prevention. The information basis has expanded rapidly during recent years, but much of it is not yet present in textbooks or other easily available sources. A further problem is that symptoms and findings in respiratory diseases induced by organic dust are non-specific and occur normally in the population. They may thus not be correctly diagnosed in the early stages.

Proper dissemination of knowledge concerning the effects of cotton and other organic dusts requires the establishment of appropriate training programmes. These should be directed not only towards workers with potential exposure but also towards employers and health personnel, particularly occupational health inspectors and engineers. Information must include source identification, symptoms and disease description, and methods of protection. An informed worker can more readily recognize work-related symptoms and communicate more effectively to a health care provider. Regarding health surveillance and screening, questionnaires are a major instrument to be used. Several versions of questionnaires specifically designed for diagnosing diseases induced by organic dust have been reported in the literature (Rylander, Peterson and Donham 1990; Schwartz et al. 1995). Lung function testing is also a useful tool for surveillance and diagnosis. Measurements of airway responsiveness have been found to be useful (Rylander and Bergström 1993; Carvalheiro et al. 1995). Other diagnostic tools such as measurements of inflammatory mediators or cell activity are still in the research phase.

 

Back

Read 12082 times Last modified on Tuesday, 11 October 2011 20:56

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Respiratory System References

Abramson, MJ, JH Wlodarczyk, NA Saunders, and MJ Hensley. 1989. Does aluminum smelting cause lung disease? Am Rev Respir Dis 139:1042-1057.

Abrons, HL, MR Peterson, WT Sanderson, AL Engelberg, and P Harber. 1988. Symptoms, ventilatory function, and environmental exposures in Portland cement workers. Brit J Ind Med 45:368-375.

Adamson, IYR, L Young, and DH Bowden. 1988. Relationship of alveolar epithelial injury and repair to the indication of pulmonary fibrosis. Am J Pathol 130(2):377-383.

Agius, R. 1992. Is silica carcinogenic? Occup Med 42: 50-52.

Alberts, WM and GA Do Pico. 1996. Reactive airways dysfunction syndrome (review). Chest 109:1618-1626.
Albrecht, WN and CJ Bryant. 1987. Polymer fume fever associated with smoking and use of a mold release spray containing polytetraflouroethylene. J Occup Med 29:817-819.

American Conference of Governmental Industrial Hygienists (ACGIH). 1993. 1993-1994 Threshold Limit Values and Biological Exposure Indices. Cincinnati, Ohio: ACGIH.

American Thoracic Society (ATS). 1987 Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. Am Rev Respir Dis 136:225-244.

—.1995. Standardization of Spirometry: 1994 update. Amer J Resp Crit Care Med 152: 1107-1137.

Antman, K and J Aisner. 1987. Asbestos-Related Malignancy. Orlando: Grune & Stratton.

Antman, KH, FP Li, HI Pass, J Corson, and T Delaney. 1993. Benign and malignant mesothelioma. In Cancer: Principles and Practice of Oncology, edited by VTJ DeVita, S Hellman, and SA Rosenberg. Philadelphia: JB Lippincott.
Asbestos Institute. 1995. Documentation center: Montreal, Canada.

Attfield, MD and K Morring. 1992. An investigation into the relationship between coal workers’ pneumoconiosis and dust exposure in US coal miners. Am Ind Hyg Assoc J 53(8):486-492.

Attfield, MD. 1992. British data on coal miners’ pneumoconiosis and relevance to US conditions. Am J Public Health 82:978-983.

Attfield, MD and RB Althouse. 1992. Surveillance data on US coal miners’ pneumoconiosis, 1970 to 1986. Am J Public Health 82:971-977.

Axmacher, B, O Axelson, T Frödin, R Gotthard, J Hed, L Molin, H Noorlind Brage, and M Ström. 1991. Dust exposure in coeliac disease: A case-referent study. Brit J Ind Med 48:715-717.

Baquet, CR, JW Horm, T Gibbs, and P Greenwald. 1991. Socioeconomic factors and cancer incidence among blacks and whites. J Natl Cancer Inst 83: 551-557.

Beaumont, GP. 1991. Reduction in airborne silicon carbide whiskers by process improvements. Appl Occup Environ Hyg 6(7):598-603.

Becklake, MR. 1989. Occupational exposures: Evidence for a causal association with chronic obstructive pulmonary disease. Am Rev Respir Dis. 140: S85-S91.

—. 1991. The epidemiology of asbestosis. In Mineral Fibers and Health, edited by D Liddell and K Miller. Boca Raton: CRC Press.

—. 1992. Occupational exposure and chronic airways disease. Chap. 13 in Environmental and Occupational Medicine. Boston: Little, Brown & Co.

—. 1993. In Asthma in the workplace, edited by IL Bernstein, M Chan-Yeung, J-L Malo and D Bernstein. Marcel Dekker.

—. 1994. Pneumoconioses. Chap. 66 in A Textbook of Respiratory Medicine, edited by JF Murray and J Nadel. Philadelphia: WB Saunders.

Becklake, MR and B Case. 1994. Fibre burden and asbestos-related lung disease: Determinants of dose-response relationships. Am J Resp Critical Care Med 150:1488-1492.

Becklake, MR. et al. 1988. The relationships between acute and chronic airways responses to occupational exposures. In Current Pulmonology. Vol. 9, edited by DH Simmons. Chicago: Year Book Medical Publishers.

Bégin, R, A Cantin, and S Massé. 1989. Recent advances in the pathogenesis and clinical assessment of mineral dust pneumoconioses: Asbestosis, silicosis and coal pneumoconiosis. Eur Resp J 2:988-1001.

Bégin, R and P Sébastien. 1989. Alveolar dust clearance capacity as determinant of individual susceptibility to asbestosis: Experimental oservations. Ann Occup Hyg 33:279-282.

Bégin, R, A Cantin, Y Berthiaume, R Boileau, G Bisson, G Lamoureux, M Rola-Pleszczynski, G Drapeau, S Massé, M Boctor, J Breault, S Péloquin, and D Dalle. 1985. Clinical features to stage alveolitis in asbestos workers. Am J Ind Med 8:521-536.

Bégin, R, G Ostiguy, R Filion, and S Groleau. 1992. Recent advances in the early diagnosis of asbestosis. Sem Roentgenol 27(2):121-139.

Bégin, T, A Dufresne, A Cantin, S Massé, P Sébastien, and G Perrault. 1989. Carborundum pneumoconiosis. Chest 95(4):842-849.

Beijer L, M Carvalheiro, PG Holt, and R Rylander. 1990. Increased blood monocyte procoagulant activity in cotton mill workers. J. Clin Lab Immunol 33:125-127.

Beral, V, P Fraser, M Booth, and L Carpenter. 1987. Epidemiological studies of workers in the nuclear industry. In Radiation and Health: The Biological Effects of Low-Level Exposure to Ionizing Radiation, edited by R Russell Jones and R Southwood. Chichester: Wiley.

Bernstein, IL, M Chan-Yeung, J-L Malo, and D Bernstein. 1993. Asthma in the Workplace. Marcel Dekker.

Berrino F, M Sant, A Verdecchia, R Capocaccia, T Hakulinen, and J Esteve. 1995. Survival of Cancer Patients in Europe: The EUROCARE Study. IARC Scientific Publications, no 132. Lyon: IARC.

Berry, G, CB McKerrow, MKB Molyneux, CE Rossiter, and JBL Tombleson. 1973. A study of the acute and chronic changes in ventilatory capacity of workers in Lancashire Cotton Mills. Br J Ind Med 30:25-36.

Bignon J, (ed.) 1990. Health-related effects of phyllosilicates. NATO ASI series Berlin: Springer-Verlag.

Bignon, J, P Sébastien, and M Bientz. 1979. Review of some factors relevant to the assessment of exposure to asbestos dusts. In The use of Biological Specimens for the Assessment of Human Exposure to Environmental Pollutants, edited by A Berlin, AH Wolf, and Y Hasegawa. Dordrecht: Martinus Nijhoff for the Commission of the European Communities.

Bignon J, J Peto and R Saracci, (eds.) 1989. Non-occupational exposure to mineral fibres. IARC Scientific Publications, no 90. Lyon: IARC.

Bisson, G, G Lamoureux, and R Bégin. 1987. Quantitative gallium 67 lung scan to assess the inflammatory activity in the pneumoconioses. Sem Nuclear Med 17(1):72-80.

Blanc, PD and DA Schwartz. 1994. Acute pulmonary responses to toxic exposures. In Respiratory Medicine, edited by JF Murray and JA Nadel. Philadelphia: WB Saunders.

Blanc, P, H Wong, MS Bernstein, and HA Boushey. 1991. An experimental human model of a metal fume fever. Ann Intern Med 114:930-936.

Blanc, PD, HA Boushey, H Wong, SF Wintermeyer, and MS Bernstein. 1993. Cytokines in metal fume fever. Am Rev Respir Dis 147:134-138.

Blandford, TB, PJ Seamon, R Hughes, M Pattison, and MP Wilderspin. 1975. A case of polytetrafluoroethylene poisoning in cockatiels accompanied by polymer fume fever in the owner. Vet Rec 96:175-178.

Blount, BW. 1990. Two types of metal fume fever: mild vs. serious. Milit Med 155:372-377.

Boffetta, P, R Saracci, A Anderson, PA Bertazzi, Chang-Claude J, G Ferro, AC Fletcher, R Frentzel-Beyme, MJ Gardner, JH Olsen, L Simonato, L Teppo, P Westerholm, P Winter, and C Zocchetti. 1992. Lung cancer mortality among workers in the European production of man-made mineral fibers-a Poisson regression analysis. Scand J Work Environ Health 18:279-286.

Borm, PJA. 1994. Biological markers and occupational lung dsease: Mineral dust-induced respiratory disorders. Exp Lung Res 20:457-470.

Boucher, RC. 1981. Mechanisms of pollutant induced airways toxicity. Clin Chest Med 2:377-392.

Bouige, D. 1990. Dust exposure results in 359 asbestos-using factories from 26 countries. In Seventh International Pneumoconiosis Conference Aug 23-26, 1988. Proceedings Part II. Washington, DC: DHS (NIOSH).

Bouhuys A. 1976. Byssinosis: Scheduled asthma in the textile industry. Lung 154:3-16.

Bowden, DH, C Hedgecock, and IYR Adamson. 1989. Silica-induced pulmonary fibrosis involves the reaction of particles with interstitial rather than alveolar macrophages. J Pathol 158:73-80.

Brigham, KL and B Mayerick. 1986. Endotoxin and Lung injury. Am Rev Respir Dis 133:913-927.

Brody, AR. 1993. Asbestos-induced lung disease. Environ Health Persp 100:21-30.

Brody, AR, LH Hill, BJ Adkins, and RW O’Connor. 1981. Chrysotile asbestos inhalation in rats: Deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis 123:670.

Bronwyn, L, L Razzaboni, and P Bolsaitis. 1990. Evidence of an oxidative mechanism for the hemolytic activity of silica particles. Environ Health Persp 87: 337-341.

Brookes, KJA. 1992. World Directory and Handbook of Hard Metal and Hard Materials. London: International Carbide Data.

Brooks, SM and AR Kalica. 1987. Strategies for elucidating the relationship between occupational exposures and chronic air-flow obstruction. Am Rev Respir Dis 135:268-273.

Brooks, SM, MA Weiss, and IL Bernstein. 1985. Reactive airways dysfunction syndrome (RADS). Chest 88:376-384.

Browne, K. 1994. Asbestos-related disorders. Chap. 14 in Occupational Lung Disorders, edited by WR Parkes. Oxford: Butterworth-Heinemann.

Brubaker, RE. 1977. Pulmonary problems associated with the use of polytetrafluoroethylene. J Occup Med 19:693-695.

Bunn, WB, JR Bender, TW Hesterberg, GR Chase, and JL Konzen. 1993. Recent studies of man-made vitreous fibers: Chronic animal inhalation studies. J Occup Med 35(2):101-113.

Burney, MB and S Chinn. 1987. Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91:79S-83S.

Burrell, R and R Rylander. 1981. A critical review of the role of precipitins in hypersensitivity pneumonitis. Eur J Resp Dis 62:332-343.

Bye, E. 1985. Occurrence of airborne silicon carbide fibers during industrial production of silicon carbide. Scand J Work Environ Health 11:111-115.

Cabral-Anderson, LJ, MJ Evans, and G Freeman. 1977. Effects of NO2 on the lungs of aging rats I. Exp Mol Pathol 27:353-365.

Campbell, JM. 1932. Acute symptoms following work with hay. Brit Med J 2:1143-1144.

Carvalheiro MF, Y Peterson, E Rubenowitz, R Rylander. 1995. Bronchial activity and work-related symptoms in farmers. Am J Ind Med 27: 65-74.

Castellan, RM, SA Olenchock, KB Kinsley, and JL Hankinson. 1987. Inhaled endotoxin and decreased spirometric values: An exposure-response relation for cotton dust. New Engl J Med 317:605-610.

Castleman, WL, DL Dungworth, LW Schwartz, and WS Tyler. 1980. Acute repiratory bronchiolitis - An ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone. Am J Pathol 98:811-840.

Chan-Yeung, M. 1994. Mechanism of occupational asthma due to Western red cedar. Am J Ind Med 25:13-18.

—. 1995. Assessment of asthma in the workplace. ACCP consensus statement. American College of Chest Physicians. Chest 108:1084-1117.
Chan-Yeung, M and J-L Malo. 1994. Aetiological agents in occupational asthma. Eur Resp J 7:346-371.

Checkoway, H, NJ Heyer, P Demers, and NE Breslow. 1993. Mortality among workers in the diatomaceous earth industry. Brit J Ind Med 50:586-597.

Chiazze, L, DK Watkins, and C Fryar. 1992. A case-control study of malignant and non-malignant respiratory disease among employees of a fibreglass manufacturing facility. Brit J Ind Med 49:326-331.

Churg, A. 1991. Analysis of lung asbestos content. Brit J Ind Med 48:649-652.

Cooper, WC and G Jacobson. 1977. A twenty-one year radiographic follow-up of workers in the diatomite industry. J Occup Med 19:563-566.

Craighead, JE, JL Abraham, A Churg, FH Green, J Kleinerman, PC Pratt, TA Seemayer, V Vallyathan and H Weill. 1982. The pathology of asbestos associated diseases of the lungs and pleural cavities. Diagnostic criteria and proposed grading system. Arch Pathol Lab Med 106: 544-596.

Crystal, RG and JB West. 1991. The Lung. New York: Raven Press.

Cullen, MR, JR Balmes, JM Robins, and GJW Smith. 1981. Lipoid pneumonia caused by oil mist exposure from a steel rolling tandem mill. Am J Ind Med 2: 51-58.

Dalal, NA, X Shi, and V Vallyathan. 1990. Role of free radicals in the mechanisms of hemolysis and lipid peroxidation by silica: Comparative ESR and cytotoxicity studies. J Tox Environ Health 29:307-316.

Das, R and PD Blanc. 1993. Chlorine gas exposure and the lung: A review. Toxicol Ind Health 9:439-455.

Davis, JMG, AD Jones, and BG Miller. 1991. Experimental studies in rats on the effects of asbestos inhalation couples with the inhalation of titanium dioxide or quartz. Int J Exp Pathol 72:501-525.

Deng, JF, T Sinks, L Elliot, D Smith, M Singal, and L Fine. 1991. Characterisation of respiratory health and exposures at a sintered permanent magnet manufacturer. Brit J Ind Med 48:609-615.

de Viottis, JM. 1555. Magnus Opus. Historia de gentibus septentrionalibus. In Aedibus Birgittae. Rome.

Di Luzio, NR. 1985. Update on immunomodulating activities of glucans. Springer Semin Immunopathol 8:387-400.

Doll, R and J Peto. 1985. Effects on health of exposure to asbestos. London, Health and Safety Commission London: Her Majesty’s Stationery Office.

—. 1987. In Asbestos-Related Malignancy, edited by K Antman and J Aisner. Orlando, Fla: Grune & Stratton.

Donelly, SC and MX Fitzgerald. 1990. Reactive airways dysfunction syndrome (RADS) due to acute chlorine exposure. Int J Med Sci 159:275-277.

Donham, K, P Haglind, Y Peterson, and R Rylander. 1989. Environmental and health studies of farm workers in Swedish swine confinement buildings. Brit J Ind Med 46:31-37.

Do Pico, GA. 1992. Hazardous exposure and lung disease among farm workers. Clin Chest Med 13: 311-328.

Dubois, F, R Bégin, A Cantin, S Massé, M Martel, G Bilodeau, A Dufresne, G Perrault, and P Sébastien. 1988. Aluminum inhalation reduces silicosis in a sheep model. Am Rev Respir Dis 137:1172-1179.

Dunn, AJ. 1992. Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: Comparison with Interleukin.1. J Pharmacol Exp Therapeut 261:964-969.

Dutton, CB, MJ Pigeon, PM Renzi, PJ Feustel, RE Dutton, and GD Renzi. 1993. Lung function in workers refining phosphorus rock to obtain elementary phosphorus. J Occup Med 35:1028-1033.

Ellenhorn, MJ and DG Barceloux. 1988. Medical Toxicology. New York: Elsevier.
Emmanuel, DA, JJ Marx, and B Ault. 1975. Pulmonary mycotoxicosis. Chest 67:293-297.

—. 1989. Organic dust toxic syndrome (pulmonary mycotoxicosis) - A review of the experience in central Wisconsin. In Principles of Health and Safety in Agriculture, edited by JA Dosman and DW Cockcroft. Boca Raton: CRC Press.

Engelen, JJM, PJA Borm, M Van Sprundel, and L Leenaerts. 1990. Blood anti-oxidant parameters at different stages in coal worker’s pneumoconiosis. Environ Health Persp 84:165-172.

Englen, MD, SM Taylor, WW Laegreid, HD Liggit, RM Silflow, RG Breeze, and RW Leid. 1989. Stimulation of arachidonic acid metabolism in silica-exposed alveolar macrophages. Exp Lung Res 15: 511-526.

Environmental Protection Agency (EPA). 1987. Ambient Air Monitoring reference and equivalent methods. Federal Register 52:24727 (July l, 1987).

Ernst and Zejda. 1991. In Mineral Fibers and Health, edited by D Liddell and K Miller. Boca Raton: CRC Press.

European Standardization Committee (CEN). 1991. Size Fraction Definitions for Measurements of Airborne Particles in the Workplace. Report No. EN 481. Luxembourg: CEN.

Evans, MJ, LJ Cabral-Anderson, and G Freeman. 1977. Effects of NO2 on the lungs of aging rats II. Exp Mol Pathol 27:366-376.

Fogelmark, B, H Goto, K Yuasa, B Marchat, and R Rylander. 1992. Acute pulmonary toxicity of inhaled (13)-B-D-glucan and endotoxin. Agents Actions 35:50-56.

Fraser, RG, JAP Paré, PD Paré, and RS Fraser. 1990. Diagnosis of Diseases of the Chest. Vol. III. Philadelphia: WB Saunders.

Fubini, B, E Giamello, M Volante, and V Bolis. 1990. Chemical functionalities at the silica surface determining its reactivity when inhaled. Formation and reactivity of surface radicals. Toxicol Ind Health 6(6):571-598.

Gibbs, AE, FD Pooley, and DM Griffith. 1992. Talc pneumoconiosis: A pathologic and mineralogic study. Hum Pathol 23(12):1344-1354.

Gibbs, G, F Valic, and K Browne. 1994. Health risk associated with chrysotile asbestos. A report of a workshop held in Jersey, Channel Islands. Ann Occup Hyg 38:399-638.

Gibbs, WE. 1924. Clouds and Smokes. New York: Blakiston.

Ginsburg, CM, MG Kris, and JG Armstrong. 1993. Non-small cell lung cancer. In Cancer: Principles & Practice of Oncology, edited by VTJ DeVita, S Hellman, and SA Rosenberg. Philadelphia: JB Lippincott.

Goldfrank, LR, NE Flomenbaum, N Lewin, and MA Howland. 1990. Goldfrank’s Toxicologic Emergencies. Norwalk, Conn.: Appleton & Lange.
Goldstein, B and RE Rendall. 1987. The prophylactic use of polyvinylpyridine-N-oxide (PVNO) in baboons exposed to quartz dust. Environmental Research 42:469-481.

Goldstein, RH and A Fine. 1986. Fibrotic reactions in the lung: The activation of the lung fibroblast. Exp Lung Res 11:245-261.
Gordon, RE, D Solano, and J Kleinerman. 1986. Tight junction alterations of respiratory epithelia following long term NO2 exposure and recovery. Exp Lung Res 11:179-193.

Gordon, T, LC Chen, JT Fine, and RB Schlesinger. 1992. Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am Ind Hyg Assoc J 53:503-509.

Graham, D. 1994. Noxious gases and fumes. In Textbook of Pulmonary Diseases, edited by GL Baum and E Wolinsky. Boston: Little, Brown & Co.

Green, JM, RM Gonzalez, N Sonbolian, and P Renkopf. 1992. The resistance to carbon dioxide laser ignition of a new endotracheal tube. J Clin Anesthesiaol 4:89-92.

Guilianelli, C, A Baeza-Squiban, E Boisvieux-Ulrich, O Houcine, R Zalma, C Guennou, H Pezerat, and F MaraNo. 1993. Effect of mineral particles containing iron on primary cultures of rabbit tracheal epithelial cells: Possible implication of oxidative stress. Environ Health Persp 101(5):436-442.

Gun, RT, Janckewicz, A Esterman, D Roder, R Antic, RD McEvoy, and A Thornton. 1983. Byssinosis: A cross-sectional study in an Australian textile factory. J Soc Occup Med 33:119-125.

Haglind P and R Rylander. Exposure to cotton dust in an experimental cardroom. Br J Ind Med 10: 340-345.

Hanoa, R. 1983. Graphite pneumoconiosis. A review of etiologic and epidemiologic aspects. Scand J Work Environ Health 9:303-314.

Harber, P, M Schenker, and J Balmes. 1996. Occupational and Environmental Respiratory Disease. St. Louis: Mosby.

Health Effects Institute - Asbestos Research. 1991. Asbestos in Public and Commercial Buildings: A Literature Review and Synthesis of Current Knowledge. Cambridge, Mass.: Health Effects Institute.

Heffner, JE and JE Repine. 1989. Pulmonary strategies of antioxidant defense. Am Rev Respir Dis 140: 531-554.

Hemenway, D, A Absher, B Fubini, L Trombley, P Vacek, M Volante, and A Cabenago. 1994. Surface functionalities are related to biological response and transport of crystalline silica. Ann Occup Hyg 38 Suppl. 1:447-454.

Henson, PM and RC Murphy. 1989. Mediators of the Inflammatory Process. New York: Elsevier.

Heppleston, AG. 1991. Minerals, fibrosis and the Lung. Environ Health Persp 94:149-168.

Herbert, A, M Carvalheiro, E Rubenowiz, B Bake, and R Rylander. 1992. Reduction of alveolar-capillary diffusion after inhalation of endotoxin in normal subjects. Chest 102:1095-1098.

Hessel, PA, GK Sluis-Cremer, E Hnizdo, MH Faure, RG Thomas, and FJ Wiles. 1988. Progression of silicosis in relation to silica dust exposure. Am Occup Hyg 32 Suppl. 1:689-696.

Higginson, J, CS Muir, and N Muñoz. 1992. Human cancer: Epidemiology and environmental causes. In Cambridge Monographs on Cancer Research. Cambridge: Cambridge Univ. Press.

Hinds, WC. 1982. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: John Wiley.

Hoffman, RE, K Rosenman, F Watt, et al. 1990. Occupational disease surveillance: Occupational asthma. Morb Mortal Weekly Rep 39:119-123.

Hogg, JC. 1981. Bronchial mucosal permeability and its relationship to airways hyperreactivity. J Allergy Clin immunol 67:421-425.

Holgate, ST, R Beasley, and OP Twentyman. 1987. The pathogenesis and significance of bronchial hyperresponsiveness in airways disease. Clin Sci 73:561-572.

Holtzman, MJ. 1991. Arachidonic acid metabolism. Implications of biological chemistry for lung function and disease. Am Rev Respir Dis 143:188-203.

Hughes, JM and H Weil. 1991. Asbestosis as a precursor of asbestos related lung cancer: Results of a prospective mortality study. Brit J Ind Med 48: 229-233.

Hussain, MH, JA Dick, and YS Kaplan. 1980. Rare earth pneumoconiosis. J Soc Occup Med 30:15-19.

Ihde, DC, HI Pass, and EJ Glatstein. 1993. Small cell lung cancer. In Cancer: Principles and Practice of Oncology, edited by VTJ DeVita, S Hellman, and SA Rosenberg. Philadelphia: JB Lippincott.

Infante-Rivard, C, B Armstrong, P Ernst, M Peticlerc, L-G Cloutier, and G Thériault. 1991. Descriptive study of prognostic factors influencing survival of compensated silicotic patients. Am Rev Respir Dis 144:1070-1074.

International Agency for Research on Cancer (IARC). 1971-1994. Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 1-58. Lyon: IARC.

—. 1987. Monographs on the Evaluation of Carcinogenic Risks to Humans, Overall Evaluations of Carcinogenicity: An Updating of IARC
Monographs. Vol. 1-42. Lyon: IARC. (Supplement 7.)

—. 1988. Man-made mineral fibres and radon. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 43. Lyon: IARC.

—. 1988. Radon. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 43. Lyon: IARC.

—. 1989a. Diesel and gasoline engine exhausts and some nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 46. Lyon: IARC.

—. 1989b. Non-occupational exposure to mineral fibres. IARC Scientific Publications, No. 90. Lyon: IARC.

—. 1989c. Some organic solvents, resin monomers and related compounds, pigments and occupational exposure in paint manufacture and painting. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 47. Lyon: IARC.

—. 1990a. Chromium and chromium compounds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 49. Lyon: IARC.

—. 1990b. Chromium, nickel, and welding. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 49. Lyon: IARC.

—. 1990c. Nickel and nickel compounds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 49. Lyon: IARC.

—. 1991a. Chlorinated drinking-water; Chlorination by-products; Some other halogenated compounds; Cobalt and cobalt compounds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 52. Lyon: IARC.

—. 1991b. Occupational exposures in spraying and application of insecticides and some pesticides. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 53. Lyon: IARC.

—. 1992. Occupational exposures to mists and vapours from sulfuric acid, other strong inorganic acids and other industrial chemicals. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 54. Lyon: IARC.

—. 1994a. Beryllium and beryllium compounds. IARC Monographs on the Evaluationof Carcinogenic Risks to Humans, No. 58. Lyon: IARC.

—. 1994b. Beryllium, cadmium and cadmium compounds, mercury and the glass industry. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 58. Lyon: IARC.

—. 1995. Survival of cancer patients in Europe: The EUROCARE study. IARC Scientific Publications, No.132. Lyon: IARC.

International Commission on Radiological Protection (ICRP). 1994. Human Respiratory Tract Model for Radiological Protection. Publication No. 66. ICRP.

International Labour Office (ILO). 1980. Guidelines for the use of ILO international classification of radiographs of pneumoconioses. Occupational Safety and Health Series, No. 22. Geneva: ILO.

—. 1985. Sixth International Report on the Prevention and Suppression of Dust in Mining, Tunnelling and Quarrying 1973-1977. Occupational Safety and Health Series, No.48. Geneva: ILO.

International Organization for Standardization (ISO). 1991. Air Quality - Particle Size Fraction Definitions for Health-Related Sampling. Geneva: ISO.

Janssen, YMW, JP Marsh, MP Absher, D Hemenway, PM Vacek, KO Leslie, PJA Borm, and BT Mossman. 1992. Expression of antioxidant enzymes in rat lungs after inhalation of asbestos or silica. J Biol Chem 267(15):10625-10630.

Jaurand, MC, J Bignon, and P Brochard. 1993. The mesothelioma cell and mesothelioma. Past, present and future. International Conference, Paris, Sept. 20 to Oct. 2, 1991. Eur Resp Rev 3(11):237.

Jederlinic, PJ, JL Abraham, A Churg, JS Himmelstein, GR Epler, and EA Gaensler. 1990. Pulmonary fibrosis in aluminium oxide workers. Am Rev Respir Dis 142:1179-1184.

Johnson, NF, MD Hoover, DG Thomassen, YS Cheng, A Dalley, and AL Brooks. 1992. In vitro activity of silicon carbide whiskers in comparison to other industrial fibers using four cell culture systems. Am J Ind Med 21:807-823.

Jones, HD, TR Jones, and WH Lyle. 1982. Carbon fibre: Results of a survey of process workers and their environment in a factory producing continuous filament. Am Occup Hyg 26:861-868.

Jones, RN, JE Diem, HW Glindmeyer, V Dharmarajan, YY Hammad, J Carr, and H Weill. 1979. Mill effect and dose-response relationships in byssinosis. Br J Ind Med 36:305-313.

Kamp, DW, P Graceffa, WA Prior, and A Weitzman. 1992. The role of free radicals in asbestos-induced diseases. Free Radical Bio Med 12:293-315.

Karjalainen, A, PJ Karhonen, K Lalu, A Pentilla, E Vanhala, P Kygornen, and A Tossavainen. 1994. Pleural plaques and exposure to mineral fibres in a male urban necropsy population. Occup Environ Med 51:456-460.

Kass, I, N Zamel, CA Dobry, and M Holzer. 1972. Bronchiectasis following ammonia burns of the respiratory tract. Chest 62:282-285.

Katsnelson, BA, LK Konyscheva, YEN Sharapova, and LI Privalova. 1994. Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model. Occup Environ Med 51:173-180.

Keenan, KP, JW Combs, and EM McDowell. 1982. Regeneration of hamster tracheal epithelium after mechanical injury I, II, III. Virchows Archiv 41:193-252.

Keenan, KP, TS Wilson, and EM McDowell. 1983. Regeneration of hamster tracheal epithelium after mechanical injury IV. Virchows Archiv 41:213-240.
Kehrer, JP. 1993. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21-48.

Keimig, DG, RM Castellan, GJ Kullman, and KB Kinsley. 1987. Respiratory health status of gilsonite workers. Am J Ind Med 11:287-296.

Kelley, J. 1990. Cytokines of the Lung. Am Rev Respir Dis 141:765-788.

Kennedy, TP, R Dodson, NV Rao, H Ky, C Hopkins, M Baser, E Tolley, and JR Hoidal. 1989. Dusts causing pneumoconiosis generate OH and product hemolysis by acting as fenton catalysts. Arch Biochem Biophys 269(1):359-364.

Kilburn, KH and RH Warshaw. 1992. Irregular opacities in the lung, occupational asthma, and airways dysfunction in aluminum workers. Am J Ind Med 21:845-853.

Kokkarinen, J, H Tuikainen, and EO Terho. 1992. Severe farmer’s lung following a workplace challenge. Scand J Work Environ Health 18:327-328.

Kongerud, J, J Boe, V Soyseth, A Naalsund, and P Magnus. 1994. Aluminium pot room asthma: The Norwegian experience. Eur Resp J 7:165-172.

Korn, RJ, DW Dockery, and FE Speizer. 1987. Occupational exposure and chronic respiratory symptoms. Am Rev Respir Dis 136:298-304.

Kriebel, D. 1994. The dosimetric model in occupational and environmental epidemiology. Occup Hyg 1:55-68.

Kriegseis, W, A Scharmann, and J Serafin. 1987. Investigations of surface properties of silica dusts with regard to their cytotoxicity. Ann Occup Hyg 31(4A):417-427.

Kuhn, DC and LM Demers. 1992. Influence of mineral dust surface chemistry on eicosanoid production by the alveolar macrophage. J Tox Environ Health 35: 39-50.

Kuhn, DC, CF Stanley, N El-Ayouby, and LM Demers. 1990. Effect of in vivo coal dust exposure on arachidonic acid metabolism in the rat alveolar macrophage. J Tox Environ Health 29:157-168.

Kunkel, SL, SW Chensue, RM Strieter, JP Lynch, and DG Remick. 1989. Cellular and molecular aspects of granulomatous inflammation. Am J Respir Cell Mol Biol 1:439-447.

Kuntz, WD and CP McCord. 1974. Polymer fume fever. J Occup Med 16:480-482.

Lapin, CA, DK Craig, MG Valerio, JB McCandless, and R Bogoroch. 1991. A subchronic inhalation toxicity study in rats exposed to silicon carbide whiskers. Fund Appl Toxicol 16:128-146.

Larsson, K, P Malmberg, A Eklund, L Belin, and E Blaschke. 1988. Exposure to microorganisms, airway inflammatory changes and immune reactions in asymptomatic dairy farmers. Int Arch Allergy Imm 87:127-133.

Lauweryns, JM and JH Baert. 1977. Alveolar clearance and the role of the pulmonary lymphatics. Am Rev Respir Dis 115:625-683.

Leach, J. 1863. Surat cotton, as it bodily affects operatives in cotton mills. Lancet II:648.

Lecours, R, M Laviolette, and Y Cormier. 1986. Bronchoalveolar lavage in pulmonary mycotoxicosis (organic dust toxic syndrome). Thorax 41:924-926.

Lee, KP, DP Kelly, FO O’Neal, JC Stadler, and GL Kennedy. 1988. Lung response to ultrafine kevlar aramid synthetic fibrils following 2-year inhalation exposure in rats. Fund Appl Toxicol 11:1-20.

Lemasters, G, J Lockey, C Rice, R McKay, K Hansen, J Lu, L Levin, and P Gartside. 1994. Radiographic changes among workers manufacturing refractory ceramic fiber and products. Ann Occup Hyg 38 Suppl 1:745-751.

Lesur, O, A Cantin, AK Transwell, B Melloni, J-F Beaulieu, and R Bégin. 1992. Silica exposure induces cytotoxicity and proliferative activity of type II. Exp Lung Res 18:173-190.

Liddell, D and K Millers (eds.). 1991. Mineral fibers and health. Florida, Boca Raton: CRC Press.
Lippman, M. 1988. Asbestos exposure indices. Environmental Research 46:86-92.

—. 1994. Deposition and retention of inhaled fibres: Effects on incidence of lung cancer and mesothelioma. Occup Environ Med 5: 793-798.

Lockey, J and E James. 1995. Man-made fibers and nonasbestos fibrous silicates. Chap. 21 in Occupational and Environmental Respiratory Diseases, edited by P Harber, MB Schenker, and JR Balmes. St.Louis: Mosby.

Luce, D, P Brochard, P Quénel, C Salomon-Nekiriai, P Goldberg, MA Billon-Galland, and M Goldberg. 1994. Malignant pleural mesothelioma associated with exposure to tremolite. Lancet 344:1777.

Malo, J-L, A Cartier, J L’Archeveque, H Ghezzo, F Lagier, C Trudeau, and J Dolovich. 1990. Prevalence of occupational asthma and immunological sensitization to psyllium among health personnel in chronic care hospitals. Am Rev Respir Dis 142:373-376.

Malo, J-L, H Ghezzo, J L’Archeveque, F Lagier, B Perrin, and A Cartier. 1991. Is the clinical history a satisfactory means of diagnosing occupational asthma? Am Rev Respir Dis 143:528-532.

Man, SFP and WC Hulbert. 1988. Airway repair and adaptation to inhalation injury. In Pathophysiology and Treatment of Inhalation Injuries, edited by J Locke. New York: Marcel Dekker.

Markowitz, S. 1992. Primary prevention of occupational lung disease: A view from the United States. Israel J Med Sci 28:513-519.

Marsh, GM, PE Enterline, RA Stone, and VL Henderson. 1990. Mortality among a cohort of US man-made mineral fiber workers: 1985 follow-up. J Occup Med 32:594-604.

Martin, TR, SW Meyer, and DR Luchtel. 1989. An evaluation of the toxicity of carbon fiber composites for lung cells in vitro and in vivo. Environmental Research 49:246-261.

May, JJ, L Stallones, and D Darrow. 1989. A study of dust generated during silo opening and its physiologic effect on workers. In Principles of Health and Safety in Agriculture, edited by JA Dosman and DW Cockcroft. Boca Raton: CRC Press.

McDermott, M, C Bevan, JE Cotes, MM Bevan, and PD Oldham. 1978. Respiratory function in slateworkers. B Eur Physiopathol Resp 14:54.

McDonald, JC. 1995. Health implications of environmental exposure to asbestos. Environ Health Persp 106: 544-96.

McDonald, JC and AD McDonald. 1987. Epidemiology of malignant mesothelioma. In Asbestos-Related Malignancy, edited by K Antman and J Aisner. Orlando, Fla: Grune & Stratton.

—. 1991. Epidemiology of mesothelioma. In Mineral Fibres and Health. Boca Raton: CRC Press.

—. 1993. Mesothelioma: Is there a background? In The Mesothelioma Cell and Mesothelioma: Past, Present and Future, edited by MC Jaurand, J Bignon, and P Brochard.

—. 1995. Chrysotile, tremolite, and mesothelioma. Science 267:775-776.

McDonald, JC, B Armstrong, B Case, D Doell, WTE McCaughey, AD McDonald, and P Sébastien. 1989. Mesothelioma and asbestos fibre type. Evidence from lung tissue analyses. Cancer 63:1544-1547.

McDonald, JC, FDK Lidell, A Dufresne, and AD McDonald. 1993. The 1891-1920 birth cohort of Quebec chrystotile miners and millers: mortality 1976-1988. Brit J Ind Med 50:1073-1081.

McMillan, DD and GN Boyd. 1982. The role of antioxidants and diet in the prevention or treatment of oxygen-induced lung microvascular injury. Ann NY Acad Sci 384:535-543.

Medical Research Council. 1960. Standardized questionnaire on respiratory symptoms. Brit Med J 2:1665.

Mekky, S, SA Roach, and RSF Schilling. 1967. Byssinosis among winders in the industry. Br J Ind Med 24:123-132.

Merchant JA, JC Lumsden, KH Kilburn, WM O’Fallon, JR Ujda, VH Germino, and JD Hamilton. 1973. Dose response studies in cotton textile workers. J Occup Med 15:222-230.

Meredith, SK and JC McDonald. 1994. Work-related respiratory disease in the United Kingdom, 1989-1992. Occup Environ Med 44:183-189.

Meredith, S and H Nordman. 1996. Occupational asthma: Measures of frequency of four countries. Thorax 51:435-440.

Mermelstein, R, RW Lilpper, PE Morrow, and H Muhle. 1994. Lung overload, dosimetry of lung fibrosis and their implications to the respiratory dust standard. Ann Occup Hyg 38 Suppl. 1:313-322.

Merriman, EA. 1989. Safe use of Kevlar aramid fiber in composites. Appl Ind Hyg Special Issue (December):34-36.

Meurman, LO, E Pukkala, and M Hakama. 1994. Incidence of cancer among anthophyllite asbestos miners in Finland. Occup Environ Med 51:421-425.

Michael, O, R Ginanni, J Duchateau, F Vertongen, B LeBon, and R Sergysels. 1991. Domestic endotoxin exposure and clinical severity of asthma. Clin Exp Allergy 21:441-448.

Michel, O, J Duchateau, G Plat, B Cantinieaux, A Hotimsky, J Gerain and R Sergysels. 1995. Blood inflammatory response to inhaled endotoxin in normal subjects. Clin Exp Allergy 25:73-79.

Morey, P, JJ Fischer, and R Rylander. 1983. Gram-negative bacteria on cotton with particular reference to climatic conditions. Am Ind Hyg Assoc J 44: 100-104.

National Academy of Sciences. 1988. Health risks of radon and other internally deposited alpha-emitters. Washington, DC: National Academy of Sciences.

—. 1990. Health effects of exposure to low levels of ionizing radiation. Washington, DC: National Academy of Sciences.

National Asthma Education Program (NAEP). 1991. Expert Panel Report: Guidelines for the Diagnosis and Management of Asthma. Bethesda, Md: National Institutes of Health (NIH).

Nemery, B. 1990. Metal toxicity and the respiratory tract. Eur Resp J 3:202-219.

Newman, LS, K Kreiss, T King, S Seay, and PA Campbell. 1989. Pathologic and immunologic alterations in early stages of beryllium disease. Reexamination of disease definition and natural history. Am Rev Respir Dis 139:1479-1486.

Nicholson, WJ. 1991. In Health Effects Institute-Asbestos Research: Asbestos in Public and Commercial Buildings. Cambrige, Mass: Health Effects Institute-Asbestos Research.

Niewoehner, DE and JR Hoidal. 1982. Lung Fibrosis and Emphysema: Divergent responses to a common injury. Science 217:359-360.

Nolan, RP, AM Langer, JS Harrington, G Oster, and IJ Selikoff. 1981. Quartz hemolysis as related to its surface functionalities. Environ Res 26:503-520.

Oakes, D, R Douglas, K Knight, M Wusteman, and JC McDonald. 1982. Respiratory effects of prolonged exposure to gypsum dust. Ann Occup Hyg 2:833-840.

O’Brodovich, H and G Coates. 1987. Pulmonary Clearance of 99mTc-DTPA: A noninvasive assessment of epithelial integrity. Lung 16:1-16.

Parkes, RW. 1994. Occupational Lung Disorders. London: Butterworth-Heinemann.

Parkin, DM, P Pisani, and J Ferlay. 1993. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 54:594-606.

Pepys, J and PA Jenkins. 1963. Farmer’s lung: Thermophilic actinomycetes as a source of “farmer’s lung hay” antigen. Lancet 2:607-611.

Pepys, J, RW Riddell, KM Citron, and YM Clayton. 1962. Precipitins against extracts of hay and molds in the serum of patients with farmer’s lung, aspergillosis, asthma and sarcoidosis. Thorax 17:366-374.

Pernis, B, EC Vigliani, C Cavagna, and M Finulli. 1961. The role of bacterial endotoxins in occupational diseases caused by inhaling vegetable dusts. Brit J Ind Med 18:120-129.

Petsonk, EL, E Storey, PE Becker, CA Davidson, K Kennedy, and V Vallyathan. 1988. Pneumoconiosis in carbon electrode workers. J Occup Med 30: 887-891.

Pézerat, H, R Zalma, J Guignard, and MC Jaurand. 1989. Production of oxygen radicals by the reduction of oxygen arising from the surface activity of mineral fibres. In Non-occupational exposure to mineral fibres, edited by J Bignon, J Peto, and R Saracci. IARC Scientific Publications, no.90. Lyon: IARC.

Piguet, PF, AM Collart, GE Gruaeu, AP Sappino, and P Vassalli. 1990. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature 344:245-247.

Porcher, JM, C Lafuma, R El Nabout, MP Jacob, P Sébastien, PJA Borm, S Hannons, and G Auburtin. 1993. Biological markers as indicators of exposure and pneumoconiotic risk: Prospective study. Int Arch Occup Environ Health 65:S209-S213.

Prausnitz, C. 1936. Investigations on respiratory dust disease in operatives in cotton industry. Medical Research Council Special Report Series, No. 212. London: His Majesty’s Stationery Office.

Preston, DL, H Kato, KJ Kopecky, and S Fujita. 1986. Life Span Study Report 10, Part 1. Cancer Mortality Among A-Bomb Survivors in Hiroshima and Nagasaki, 1950-1982. Technical Report. RERF TR.

Quanjer, PH, GJ Tammeling, JE Cotes, OF Pedersen, R Peslin and J-C Vernault. 1993. Lung volumes and forced ventilatory flows. Report of Working Party, Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Resp J 6(suppl 16): 5-40.

Raabe, OG. 1984. Deposition and clearance of inhaled particles. In Occupational Lung Disease, edited by BL Gee, WKC Morgan, and GM Brooks. New York: Raven Press.

Ramazzini, B. 1713. De Moribis Artificium Diatriba (Diseases of Workers). In Allergy Proc 1990, 11:51-55.

Rask-Andersen A. 1988. Pulmonary reactions to inhalation of mould dust in farmers with special reference to fever and allergic alveolitis. Acta Universitatis Upsalienses. Dissertations from the Faculty of Medicine 168. Uppsala.

Richards, RJ, LC Masek, and RFR Brown. 1991. Biochemical and Cellular Mechanisms of Pulmonary Fibrosis. Toxicol Pathol 19(4):526
-539.

Richerson, HB. 1983. Hypersensitivity pneumonitis – pathology and pathogenesis. Clin Rev Allergy 1: 469-486.

—. 1990. Unifying concepts underlying the effects of organic dust exposures. Am J Ind Med 17:139-142.

—. 1994. Hypersensitivity pneumonitis. In Organic Dusts - Exposure, Effects, and Prevention, edited by R Rylander and RR Jacobs. Chicago: Lewis Publishing.

Richerson, HB, IL Bernstein, JN Fink, GW Hunninghake, HS Novey, CE Reed, JE Salvaggio, MR Schuyler, HJ Schwartz, and DJ Stechschulte. 1989. Guidelines for the clinical evaluation of hypersensitivity pneumonitis. J Allergy Clin immunol 84:839-844.

Rom, WN. 1991. Relationship of inflammatory cell cytokines to disease severity in individuals with occupational inorganic dust exposure. Am J Ind Med 19:15-27.

—. 1992a. Environmental and Occupational Medicine. Boston: Little, Brown & Co.

—. 1992b. Hairspray-induced lung disease. In Environmental and Occupational Medicine, edited by WN Rom. Boston: Little, Brown & Co.

Rom, WN, JS Lee, and BF Craft. 1981. Occupational and environmental health problems of the developing oil shale industry: A review. Am J Ind Med 2: 247-260.

Rose, CS. 1992. Inhalation fevers. In Environmental and Occupational Medicine, edited by WN Rom. Boston: Little, Brown & Co.

Rylander R. 1987. The role of endotoxin for reactions after exposure to cotton dust. Am J Ind Med 12: 687-697.

Rylander, R, B Bake, J-J Fischer and IM Helander 1989. Pulmonary function and symptoms after inhalation of endotoxin. Am Rev Resp Dis 140:981-986.

Rylander R and R Bergström 1993. Bronchial reactivity among cotton workers in relation to dust and endotoxin exposure. Ann Occup Hyg 37:57-63.

Rylander, R, KJ Donham, and Y Peterson. 1986. Health effects of organic dusts in the farm environment. Am J Ind Med 10:193-340.

Rylander, R and P Haglind. 1986. Exposure of cotton workers in an experimental cardroom with reference to airborne endotoxins. Environ Health Persp 66:83-86.

Rylander R, P Haglind, M Lundholm 1985. Endotoxin in cotton dust and respiratory function decrement among cotton workers. Am Rev Respir Dis 131:209-213.

Rylander, R and PG Holt. 1997. Modulation of immune response to inhaled allergen by co-exposure to the microbial cell wall components (13)-B-D-glucan and endotoxin. Manuscript.

Rylander, R and RR Jacobs. 1994. Organic Dusts: Exposure, Effects, and Prevention. Chicago: Lewis Publishing.

—. 1997. Environmental endotoxin – A criteria document. J Occup Environ Health 3: 51-548.

Rylander, R and Y Peterson. 1990. Organic dusts and lung disease. Am J Ind Med 17:1148.

—. 1994. Causative agents for organic dust related disease. Am J Ind Med 25:1-147.

Rylander, R, Y Peterson, and KJ Donham. 1990. Questionnaire evaluating organic dust exposure. Am J Ind Med 17:121-126.

Rylander, R, RSF Schilling, CAC Pickering, GB Rooke, AN Dempsey, and RR Jacobs. 1987. Effects after acute and chronic exposure to cotton dust - The Manchester criteria. Brit J Ind Med 44:557-579.

Sabbioni, E, R Pietra, and P Gaglione. 1982. Long term occupational risk of rare-earth pneumoconiosis. Sci Total Environ 26:19-32.

Sadoul, P. 1983. Pneumoconiosis in Europe yesterday, today and tomorrow. Eur J Resp Dis 64 Suppl. 126:177-182.

Scansetti, G, G Piolatto, and GC Botta. 1992. Airborne fibrous and non-fibrous particles in a silicon carbide manufacturing plant. Ann Occup Hyg 36(2):145-153.

Schantz, SP, LB Harrison, and WK Hong. 1993. Tumours of the nasal cavity and paranasal sinuses, nasopharynx, oral cavity,and oropharynx. In Cancer: Principles & Practice of Oncology, edited by VTJ DeVita, S Hellman, and SA Rosenberg. Philadelphia: JB Lippincott.

Schilling, RSF. 1956. Byssinosis in cotton and other textile workers. Lancet 2:261-265.

Schilling, RSF, JPW Hughes, I Dingwall-Fordyce, and JC Gilson. 1955. An epidemiological study of byssinosis among Lancashire cotton workers. Brit J Ind Med 12:217-227.

Schulte, PA. 1993. Use of biological markers in occupational health research and practice. J Tox Environ Health 40:359-366.

Schuyler, M, C Cook, M Listrom, and C Fengolio-Preiser. 1988. Blast cells transfer experimental hypersensitivity pneumonitis in guinea pigs. Am Rev Respir Dis 137:1449-1455.

Schwartz DA, KJ Donham, SA Olenchock, WJ Popendorf, D Scott Van Fossen, LJ Burmeister and JA Merchant. 1995. Determinants of longitudinal changes in spirometric function among swine confinement operators and farmers. Am J Respir Crit Care Med 151: 47-53.

Science of the total environment. 1994. Cobalt and Hard Metal Disease 150(Special issue):1-273.

Scuderi, P. 1990. Differential effects of copper and zinc on human peripheral blood monocyte cytokine secretion. Cell Immunol 265:2128-2133.
Seaton, A. 1983. Coal and the lung. Thorax 38:241-243.

Seaton, J, D Lamb, W Rhind Brown, G Sclare, and WG Middleton. 1981. Pneumoconiosis of shale miners. Thorax 36:412-418.

Sébastien, P. 1990. Les mystères de la nocivité du quartz. In Conférence Thématique. 23 Congrès International De La Médecine Du Travail Montréal: Commission international de la Médecine du travail.

—. 1991. Pulmonary Deposition and Clearance of Airborne Mineral Fibers. In Mineral Fibers and Health, edited by D Liddell and K Miller. Boca Raton: CRC Press.

Sébastien, P, A Dufresne, and R Bégin. 1994. Asbestos fibre retention and the outcome of asbestosis with or without exposure cessation. Ann Occup Hyg 38 Suppl. 1:675-682.

Sébastien, P, B Chamak, A Gaudichet, JF Bernaudin, MC Pinchon, and J Bignon. 1994. Comparative study by analytical transmission electron microscopy of particles in alveolar and interstitial human lung macrophages. Ann Occup Hyg 38 Suppl. 1:243-250.

Seidman, H and IJ Selikoff. 1990. Decline in death rates among asbestos insulation workers 1967-1986 associated with diminution of work exposure to asbestos. Annals of the New York Academy of Sciences 609:300-318.

Selikoff, IJ and J Churg. 1965. The biological effects of asbestos. Ann NY Acad Sci 132:1-766.

Selikoff, IJ and DHK Lee. 1978. Asbestos and Disease. New York: Academic Press.

Sessions, RB, LB Harrison, and VT Hong. 1993. Tumours of the larynx, and hypopharynx. In Cancer: Principles and Practice of Oncology, edited by VTJ DeVita, S Hellman, and SA Rosenberg. Philadelphia: JB Lippincott.

Shannon, HS, E Jamieson, JA Julian, and DCF Muir. 1990. Mortality of glass filament (textile) workers. Brit J Ind Med 47:533-536.

Sheppard, D. 1988. Chemical agents. In Respiratory Medicine, edited by JF Murray and JA Nadel. Philadelphia: WB Saunders.

Shimizu, Y, H Kato, WJ Schull, DL Preston, S Fujita, and DA Pierce. 1987. Life span study report 11, Part 1. Comparison of Risk Coefficients for Site-Specific Cancer Mortality based on the DS86 and T65DR Shielded Kerma and Organ Doses. Technical Report. RERF TR 12-87.

Shusterman, DJ. 1993. Polymer fume fever and other flourocarbon pyrolysis related syndromes. Occup Med: State Art Rev 8:519-531.

Sigsgaard T, OF Pedersen, S Juul and S Gravesen. Respiratory disorders and atopy in cotton wool and other textile mill workers in Denmark. Am J Ind Med 1992;22:163-184.

Simonato, L, AC Fletcher, and JW Cherrie. 1987. The International Agency for Research on Cancer historical cohort study of MMMF production workers in seven European countries: Extension of the follow-up. Ann Occup Hyg 31:603-623.

Skinner, HCW, M Roos, and C Frondel. 1988. Asbestos and Other Fibrous Minerals. New York: Oxford Univ. Press.

Skornik, WA. 1988. Inhalation toxicity of metal particles and vapors. In Pathophysiology and Treatment of Inhalation Injuries, edited by J Locke. New York: Marcel Dekker.

Smith, PG and R Doll. 1982. Mortality among patients with ankylosing sponchylitis after a single treatment course with X-rays. Brit Med J 284:449-460.

Smith, TJ. 1991. Pharmacokinetic models in the development of exposure indicators in epidemiology. Ann Occup Hyg 35(5):543-560.

Snella, M-C and R Rylander. 1982. Lung cell reactions after inhalation of bacterial lipopolysaccharides. Eur J Resp Dis 63:550-557.

Stanton, MF, M Layard, A Tegeris, E Miller, M May, E Morgan, and A Smith. 1981. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst 67:965-975.

Stephens, RJ, MF Sloan, MJ Evans, and G Freeman. 1974. Alveolar type I cell response to exposure to 0.5 ppm 03 for short periods. Exp Mol Pathol 20:11-23.

Stille, WT and IR Tabershaw. 1982. The mortality experience of upstate New York talc workers. J Occup Med 24:480-484.

Strom, E and O Alexandersen. 1990. Pulmonary damage caused by ski waxing. Tidsskrift for Den Norske Laegeforening 110:3614-3616.

Sulotto, F, C Romano, and A Berra. 1986. Rare earth pneumoconiosis: A new case. Am J Ind Med 9: 567-575.

Trice, MF. 1940. Card-room fever. Textile World 90:68.

Tyler, WS, NK Tyler, and JA Last. 1988. Comparison of daily and seasonal exposures of young monkeys to ozone. Toxicology 50:131-144.

Ulfvarson, U and M Dahlqvist. 1994. Pulmonary function in workers exposed to diesel exhaust. In Encyclopedia of Environmental Control Technology New Jersey: Gulf Publishing.

US Department of Health and Human Services. 1987. Report on cancer risks associated with the ingestion of asbestos. Environ Health Persp 72:253-266.

US Department of Health and Human Services (USDHHS). 1994. Work-Related Lung Disease Surveillance Report. Washington, DC: Public Health Services, Center for Disease Control and Prevention.

Vacek, PM and JC McDonald. 1991. Risk assessment using exposure intensivity: An application to vermiculite mining. Brit J Ind Med 48:543-547.

Valiante, DJ, TB Richards, and KB Kinsley. 1992. Silicosis surveillance in New Jersey: Targeting workplaces using occupational disease and exposure surveillance data. Am J Ind Med 21:517-526.

Vallyathan, NV and JE Craighead. 1981. Pulmonary pathology in workers exposed to nonasbestiform talc. Hum Pathol 12:28-35.

Vallyathan, V, X Shi, NS Dalal, W Irr, and V Castranova. 1988. Generation of free radicals from freshly fractured silica dust. Potential role in acute silica-induced lung injury. Am Rev Respir Dis 138:1213-1219.

Vanhee, D, P Gosset, B Wallaert, C Voisin, and AB Tonnel. 1994. Mechanisms of fibrosis in coal workers’ pneumoconiosis. Increased production of platelet-derived growth factor, insulin-like growth factor type I, and transforming growth-factor beta and relationship to disease severity. Am J Resp Critical Care Med 150(4):1049-1055.

Vaughan, GL, J Jordan, and S Karr. 1991. The toxicity, in vitro, of silicon carbide whiskers. Environmental Research 56:57-67.
Vincent, JH and K Donaldson. 1990. A dosimetric approach for relating the biological response of the lung to the accumulation of inhaled mineral dust. Brit J Ind Med 47:302-307.

Vocaturo, KG, F Colombo, and M Zanoni. 1983. Human exposure to heavy metals. Rare earth pneumoconiosis in occupational workers. Chest 83:780-783.

Wagner, GR. 1996. Health Screening and Surveillance of Mineral Dust Exposed Workers. Recommendation for the ILO Workers Group. Geneva: WHO.

Wagner, JC. 1994. The discovery of the association between blue asbestos and mesotheliomas and the aftermath. Brit J Ind Med 48:399-403.

Wallace, WE, JC Harrison, RC Grayson, MJ Keane, P Bolsaitis, RD Kennedy, AQ Wearden, and MD Attfield. 1994. Aluminosilicate surface contamination of respirable quartz particles from coal mine dusts and from clay works dust. Ann Occup Hyg 38 Suppl. 1:439-445.

Warheit, DB, KA Kellar, and MA Hartsky. 1992. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: Evidence for biodegradability of inhaled fibrils. Toxicol Appl Pharmacol 116:225-239.

Waring, PM and RJ Watling. 1990. Rare deposits in a deceased movie projectionist. A new case of rare earth pneumoconiosis? Med J Austral 153:726-730.

Wegman, DH and JM Peters. 1974. Polymer fume fever and cigarette smoking. Ann Intern Med 81:55-57.

Wegman, DH, JM Peters, MG Boundy, and TJ Smith. 1982. Evaluation of respiratory effects in miners and millers exposed to talc free of asbestos and silica. Brit J Ind Med 39:233-238.

Wells, RE, RF Slocombe, and AL Trapp. 1982. Acute toxicosis of budgerigars (Melopsittacus undulatus) caused by pyrolysis products from heated polytetrafluoroethylene: Clinical study. Am J Vet Res 43:1238-1248.

Wergeland, E, A Andersen, and A Baerheim. 1990. Morbidity and mortality in talc-exposed workers. Am J Ind Med 17:505-513.

White, DW and JE Burke. 1955. The Metal Beryllium. Cleveland, Ohio: American Society for Metals.

Wiessner, JH, NS Mandel, PG Sohnle, A Hasegawa, and GS Mandel. 1990. The effect of chemical modification of quartz surfaces on particulate-induces pulmonary inflammation and fibrosis in the mouse. Am Rev Respir Dis 141:11-116.

Williams, N, W Atkinson, and AS Patchefsky. 1974. Polymer fume fever: Not so benign. J Occup Med 19:693-695.

Wong, O, D Foliart, and LS Trent. 1991. A case-control study of lung cancer in a cohort of workers potentially exposed to slag wool fibres. Brit J Ind Med 48:818-824.

Woolcock, AJ. 1989. Epidemiology of Chronic airways disease. Chest 96 (Suppl): 302-306S.

World Health Organization (WHO) and International Agency for Research on Cancer (IARC). 1982. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Lyon: IARC.

World Health Organization (WHO) and Office of Occupational Health. 1989. Occupational Exposure Limit for Asbestos. Geneva: WHO.


Wright, JL, P Cagle, A Shurg, TV Colby, and J Myers. 1992. Diseases of the small airways. Am Rev Respir Dis 146:240-262.

Yan, CY, CC Huang, IC Chang, CH Lee, JT Tsai, and YC Ko. 1993. Pulmonary function and respiratory symptoms of portland cement workers in southern Taiwan. Kaohsiung J Med Sci 9:186-192.

Zajda, EP. 1991. Pleural and airway disease associated with mineral fibers. In Mineral Fibers and
Health, edited by D Liddell and K Miller. Boca Raton: CRC Press.

Ziskind, M, RN Jones, and H Weill. 1976. Silicosis. Am Rev Respir Dis 113:643-665.