Saturday, 26 February 2011 18:19

Pyrotechnics Industry

Rate this item
(1 Vote)

Adapted from 3rd edition, “Encyclopaedia of Occupational Health and Safety”.

The pyrotechnics industry may be defined as the manufacture of pyrotechnic articles (fireworks) for entertainment, for technical and military use in signalling and illumination, for use as pesticides and for various other purposes. These articles contain pyrotechnic substances made up of powders or paste compositions which are shaped, compacted or compressed as required. When they are ignited, the energy they contain is released to give specific effects, such as illumination, detonation, whistling, screaming, smoke formation, smouldering, propulsion, ignition, priming, shooting and disintegration. The most important pyrotechnic substance is still black powder (gunpowder, consisting of charcoal, sulphur and potassium nitrate), which may be used loose for detonation, compacted for propulsion or shooting, or buffered with wood charcoal as a primer.

Processes

Raw materials used in the manufacture of pyrotechnics must be very pure, free from all mechanical impurities and (above all) free from acid ingredients. This also applies to subsidiary materials such as paper, pasteboard and glue. Table 1 lists common raw materials used in pyrotechnics manufacture.

Table 1. Raw materials used in the manufacture of pyrotechnics

Products

Raw materials

Explosives

Nitrocellulose (collodion wool), silver fulminate, black powder
(potassium nitrate, sulphur and charcoal).

Combustible materials

Acaroid resin, dextrine, gallic acid, gum arabic, wood, charcoal,
rosin, lactose, polyvinyl chloride (PVC), shellac, methylcellulose,
antimony sulphide, aluminium, magnesium, silicon, zinc,
phosphorus, sulphur.

Oxidizing materials

Potassium chlorate, barium chlorate, potassium, perchlorate, barium
nitrate, potassium nitrate, sodium nitrate, strontium nitrate, barium
peroxide, lead dioxide, chromium oxide.

Flame-tinting materials

Barium carbonate (green), cryolite (yellow), copper, ammonium
sulphate (blue), sodium oxalate (yellow), copper carbonate (blue),
copper acetate arsenite (blue), strontium carbonate (red), strontium
oxalate (red). Dyes are used to produce coloured smoke,
and ammonium chloride to produce white smoke.

Inert materials

Glyceryl tristearate, paraffin, diatomaceous earth, lime, chalk.

 

After being dried, ground and sifted, the raw materials are weighed and mixed in a special building. Formerly they were always mixed by hand but in modern plants mechanical mixers are often used. After mixing, the substances should be kept in special storage buildings to avoid accumulations in workrooms. Only the quantities required for the actual processing operations should be taken from these buildings into the workrooms.

The cases for pyrotechnic articles may be of paper, pasteboard, synthetic material or metal. The method of packing varies. For example, for detonation the composition is poured loose into a case and sealed, whereas for propulsion, illumination, screaming or whistling it is poured loose into the case and then compacted or compressed and sealed.

Compacting or compressing formerly was done by blows from a mallet on a wooden “setting-down” tool, but this method is rarely employed in modern facilities; hydraulic presses or rotary lozenge presses are used instead. Hydraulic presses enable the composition to be compressed simultaneously in a number of cases.

Illumination substances are often shaped when wet to form stars, which are then dried and put into cases for rockets, bombs and so on. Substances made by a wet process must be well dried or they may ignite spontaneously.

Since many pyrotechnic substances are difficult to ignite when compressed, the pyrotechnic articles concerned are provided with an intermediate or priming ingredient to ensure ignition; the case is then sealed. The article is ignited from the outside by a quick-match, a fuse, a scraper or sometimes by a percussion cap.

Hazards

The most important hazards in pyrotechnics are clearly fire and explosion. Because of the small number of machines involved, mechanical hazards are less important; they are similar to those in other industries.

The sensitivity of most pyrotechnic substances is such that in loose form they may easily be ignited by blows, friction, sparks and heat. They present fire and explosion risks and are considered as explosives. Many pyrotechnic substances have the explosive effect of ordinary explosives, and workers are liable to have their clothes or body burned by sheets of flame.

During the processing of toxic substances used in pyrotechnics (e.g., lead and barium compounds and copper acetate arsenite) a health hazard may be present from inhalation of the dust while weighing and mixing.

Safety and Health Measures

Only reliable persons should be employed in the manufacture of pyrotechnic substances. Young persons under 18 years of age should not be employed. Proper instruction and supervision of the workers are necessary.

Before any manufacturing process is undertaken it is important to ascertain the sensitivity of pyrotechnic substances to friction, impact and heat, and also their explosive action. The nature of the manufacturing process and permissible quantities in the workrooms and the storage and drying buildings will depend on these properties.

The following fundamental precautions should be taken in the manufacture of pyrotechnic substances and articles:

  • The buildings in the non-hazardous part of the undertaking (offices, workshops, eating areas and so on) should be sited well away from those in the hazardous areas.
  • There should be separate manufacturing, processing and storage buildings for the different manufacturing processes in the hazardous areas and these buildings should be situated well apart
  • The processing buildings should be divided up into separate workrooms.
  • The quantities of pyrotechnic substances in the mixing, processing, storage and drying buildings should be limited.
  • The number of workers in the different workrooms should be limited.

 

The following distances are recommended:

  • between buildings in the hazardous areas and those in the non-hazardous areas, at least 30 m
  • between the various processing buildings themselves, 15 m
  • between mixing, drying and storage buildings and other buildings, 20 to 40 m depending on the construction and the number of workers affected
  • between different mixing, drying and storage buildings, 15 to 20 m.

 

The distances between working premises may be reduced in favourable circumstances and if protective walls are built between them.

Separate buildings should be provided for the following purposes: storing and preparing raw materials, mixing, storing compositions, processing (packing, compacting or compressing), drying, finishing (gluing, lacquering, packing, paraffining, etc.), drying and storing the finished articles, and storing black powder.

The following raw materials should be stored in isolated rooms: chlorates and perchlorates, ammonium perchlorate; nitrates, peroxides and other oxidizing substances; light metals; combustible substances; flammable liquids; red phosphorus; nitrocellulose. Nitrocellulose must be kept wet. Metal powders must be protected against moisture, fatty oils and grease. Oxidizers should be stored separately from other materials.

Building design

For mixing, buildings of the explosion-venting type (three resistant walls, resistant roof and one explosion-vent wall made of plastic sheeting) are the most suitable. A protective wall in front of the explosion-vent wall is advisable. Mixing rooms for substances containing chlorates should not be used for substances containing metals or antimony sulphide.

For drying, buildings with an explosion-vent area and buildings covered with earth and provided with an explosion-vent wall have proved satisfactory. They should be surrounded by an embankment. In drying houses a controlled room temperature of 50 ºC is advisable.

In the processing buildings, there should be separate rooms for: filling; compressing or compacting; cutting off, “choking” and closing the cases; lacquering shaped and compressed pyrotechnic substances; priming pyrotechnic substances; storing pyrotechnic substances and intermediate products; packing; and storing packed substances. A row of buildings with explosion-vent areas has been found to be best. The strength of the intermediate walls should be suited to the nature and quantity of the substances handled.

The following are basic rules for buildings in which potentially explosive materials are used or present:

  • The buildings should be single-storied and have no basement.
  • Roof surfaces should afford sufficient protection against the spread of fire.
  • The walls of the rooms must be smooth and washable.
  • Floors should have a level, smooth surface without gaps. They should be made of soft material such as xylolith, asphalt free from sand, and synthetic materials. Ordinary wood floors should not be used. The floors of dangerous rooms should be electrically conductive, and the workers in them should wear shoes with electrically conductive soles.
  • The doors and windows of all buildings must open outwards. During working hours doors should not be locked.
  • The heating of buildings by open fires is not permissible. For heating dangerous buildings, only hot water, low-pressure steam or dust-tight electrical systems should be used. Radiators should be smooth and easy to clean on all sides: radiators with finned pipes should not be used. A temperature of 115 ºC is recommended for heating surfaces and pipes.
  • Workbenches and shelves should be made of fire-resistant material or hard wood.
  • The work, storage and drying rooms and their equipment should be regularly cleaned by wet wiping.
  • Workplaces, entrances and ways of escape must be planned in such a way that rooms can be quickly evacuated.
  • As far as practicable, workplaces should be separated by protective walls.
  • Necessary stocks should be stored safely.
  • All buildings should be equipped with lightning conductors.
  • Smoking, open flames and the carrying of matches and lighters within the premises must be prohibited.

 

Equipment

Mechanical presses should have protective screens or walls so that if fire breaks out the workers will not be endangered and the fire cannot spread to neighbouring workplaces. If large quantities of materials are handled, presses should be in isolated rooms and operated from outside. No person should stay in the press room.

Fire-extinguishing appliances should be provided in sufficient quantity, marked conspicuously and checked at regular intervals. They should be suited to the nature of the materials present. Class D fire extinguishers should be used on burning metal powder, not water, foam, dry chemical or carbon dioxide. Showers, woollen blankets and fire-retardant blankets are recommended for extinguishing burning clothing.

Persons who come into contact with pyrotechnic substances or are liable to be endangered by sheets of flame should wear proper fire- and heat-resistant protective clothing. The clothing should be de-dusted daily at a place appointed for the purpose to remove any contaminants.

Measures should be taken in the undertaking to provide first aid in case of accidents.

Materials

Dangerous waste materials with different properties should be collected separately. Waste containers must be emptied daily. Until it is destroyed, collected waste should be kept in a protected place at least 15 m from any building. Defective products and intermediate products should as a rule be treated as waste. They should only be reprocessed if to do so does not create any risks.

When materials injurious to health are processed, direct contact with them should be avoided. Harmful gases, vapours and dusts should be effectively and safely exhausted. If the exhaust systems are inadequate, respiratory protective equipment must be worn. Suitable protective clothing should be provided.

 

Back

Read 9864 times Last modified on Tuesday, 02 August 2011 21:50
More in this category: « Biotechnology Industry

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Chemical Processing References

Adams, WV, RR Dingman, and JC Parker. 1995. Dual gas sealing technology for pumps. Proceedings 12th International Pump Users Symposium. March, College Station, TX.

American Petroleum Institute (API). 1994. Shaft Sealing Systems for Centrifugal Pumps. API Standard 682. Washington, DC: API.

Auger, JE. 1995. Build a proper PSM program from the ground-up. Chemical Engineering Progress 91:47-53.

Bahner, M. 1996. Level-measurement tools keep tank contents where they belong. Environmental Engineering World 2:27-31.

Balzer, K. 1994. Strategies for developing biosafety programs in biotechnology facilities. Presented at the 3rd National Symposium on Biosafety, 1 March, Atlanta, GA.

Barletta, T, R Bayle, and K Kennelley. 1995. TAPS storage tank bottom: Fitted with improved connection. Oil & Gas Journal 93:89-94.

Bartknecht, W. 1989. Dust Explosions. New York: Springer-Verlag.

Basta, N. 1994. Technology lifts the VOC cloud. Chemical Engineering 101:43-48.

Bennett, AM. 1990. Health Hazards in Biotechnology. Salisbury, Wiltshire, UK: Division of Biologics, Public Health Laboratory Service, Centre for Applied Microbiology and Research.

Berufsgenossenschaftlices Institut für Arbeitssicherheit (BIA). 1997. Measurement of Hazardous Substances: Determination of Exposure to Chemical and Biological Agents. BIA Working Folder. Bielefeld: Erich Schmidt Verlag.

Bewanger, PC and RA Krecter. 1995. Making safety data “safe”. Chemical Engineering 102:62-66.

Boicourt, GW. 1995. Emergency relief system (ERS) design: An integrated approach using DIERS methodology. Process Safety Progress 14:93-106.

Carroll, LA and EN Ruddy. 1993. Select the best VOC control strategy. Chemical Engineering Progress 89:28-35.

Center for Chemical Process Safety (CCPS). 1988. Guidelines for Safe Storage and Handling of High Toxic Hazard Materials. New York: American Institute of Chemical Engineers.

—. 1993. Guidelines for Engineering Design for Process Safety. New York: American Institute of Chemical Engineers.
Cesana, C and R Siwek. 1995. Ignition behavior of dusts meaning and interpretation. Process Safety Progress 14:107-119.

Chemical and Engineering News. 1996. Facts and figures for the chemical industry. C&EN (24 June):38-79.

Chemical Manufacturers Association (CMA). 1985. Process Safety Management (Control of Acute Hazards). Washington, DC: CMA.

Committee on Recombinant DNA Molecules, Assembly of Life Sciences, National Research Council, National Academy of Sciences. 1974. Letter to the editor. Science 185:303.

Council of the European Communities. 1990a. Council Directive of 26 November 1990 on the protection of workers from risks related to exposure to biological agents at work. 90/679/EEC. Official Journal of the European Communities 50(374):1-12.

—. 1990b. Council Directive of 23 April 1990 on the deliberate release into the environment of genetically modified organisms. 90/220/EEC. Official Journal of the European Communities 50(117): 15-27.

Dow Chemical Company. 1994a. Dow’s Fire & Explosion Index Hazard Classification Guide, 7th edition. New York: American Institute of Chemical Engineers.

—. 1994b. Dow’s Chemical Exposure Index Guide. New York: American Institute of Chemical Engineers.

Ebadat, V. 1994. Testing to assess your powder’s fire and explosion hazards. Powder and Bulk Engineering 14:19-26.
Environmental Protection Agency (EPA). 1996. Proposed guidelines for ecological risk assessment. Federal Register 61.

Fone, CJ. 1995. The application of innovation and technology to the containment of shaft seals. Presented at the First European Conference on Controlling Fugitive Emissions from Valves, Pumps, and Flanges, 18-19 October, Antwerp.

Foudin, AS and C Gay. 1995. Introduction of genetically engineered microorganisms into the environment: Review under USDA, APHIS regulatory authority. In Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, edited by MA Levin and E Israeli. Boca Raton, FL:CRC Press.

Freifelder, D (ed.). 1978. The controversy. In Recombinant DNA. San Francisco, CA: WH Freeman.

Garzia, HW and JA Senecal. 1996. Explosion protection of pipe systems conveying combustible dusts or flammable gases. Presented at the 30th Loss Prevention Symposium, 27 February, New Orleans, LA.

Green, DW, JO Maloney, and RH Perry (eds.). 1984. Perry’s Chemical Engineer’s Handbook, 6th edition. New York: McGraw-Hill.

Hagen, T and R Rials. 1994. Leak-detection method ensures integrity of double bottom storage tanks. Oil & Gas Journal (14 November).

Ho, M-W. 1996. Are current transgenic technologies safe? Presented at the Workshop on Capacity Building in Biosafety for Developing Countries, 22-23 May, Stockholm.

Industrial Biotechnology Association. 1990. Biotechnology in Perspective. Cambridge, UK: Hobsons Publishing plc.

Industrial Risk Insurers (IRI). 1991. Plant Layout and Spacing for Oil and Chemical Plants. IRI Information Manual 2.5.2. Hartford, CT: IRI.

International Commission on Non-Ionizing Radiation Protection (ICNIRP). In press. Practical Guide for Safety in the Use of RF Dielectric Heaters and Sealers. Geneva: ILO.

Lee, SB and LP Ryan. 1996. Occupational health and safety in the biotechnology industry: A survey of practicing professionals. Am Ind Hyg Assoc J 57:381-386.

Legaspi, JA and C Zenz. 1994. Occupational health aspects of pesticides: Clinical and hygienic principles. In Occupational Medicine, 3rd edition, edited by C Zenz, OB Dickerson, and EP Horvath. St. Louis: Mosby-Year Book, Inc.

Lipton, S and JR Lynch. 1994. Handbook of Health Hazard Control in the Chemical Process Industry. New York: John Wiley & Sons.

Liberman, DF, AM Ducatman, and R Fink. 1990. Biotechnology: Is there a role for medical surveillance? In Bioprocessing Safety: Worker and Community Safety and Health Considerations. Philadelphia, PA: American Society for Testing and Materials.

Liberman, DF, L Wolfe, R Fink, and E Gilman. 1996. Biological safety considerations for environmental release of transgenic organisms and plants. In Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, edited by MA Levin and E Israeli. Boca Raton, FL: CRC Press.

Lichtenstein, N and K Quellmalz. 1984. Flüchtige Zersetzungsprodukte von Kunststoffen I: ABS-Polymere. Staub-Reinhalt 44(1):472-474.

—. 1986a. Flüchtige Zersetzungsprodukte von Kunststoffen II: Polyethylen. Staub-Reinhalt 46(1):11-13.

—. 1986b. Flüchtige Zersetzungsprodukte von Kunststoffen III: Polyamide. Staub-Reinhalt 46(1):197-198.

—. 1986c. Flüchtige Zersetzungsprodukte von Kunststoffen IV: Polycarbonate. Staub-Reinhalt 46(7/8):348-350.

Massachusetts Biotechnology Council Community Relations Committee. 1993. Unpublished statistics.

Mecklenburgh, JC. 1985. Process Plant Layout. New York: John Wiley & Sons.

Miller, H. 1983. Report on the World Health Organization Working Group on Health Implications of Biotechnology. Recombinant DNA Technical Bulletin 6:65-66.

Miller, HI, MA Tart and TS Bozzo. 1994. Manufacturing new biotech products: Gains and growing pains. J Chem Technol Biotechnol 59:3-7.

Moretti, EC and N Mukhopadhyay. 1993. VOC control: Current practices and future trends. Chemical Engineering Progress 89:20-26.

Mowrer, DS. 1995. Use quantitative analysis to manage fire risk. Hydrocarbon Processing 74:52-56.

Murphy, MR. 1994. Prepare for EPA’s risk management program rule. Chemical Engineering Progress 90:77-82.

National Fire Protection Association (NFPA). 1990. Flammable and Combustible Liquid. NFPA 30. Quincy, MA: NFPA.

National Institute for Occupational Safety and Health (NIOSH). 1984. Recommendations for Control of Occupational Safety and Health Hazards. Manufacture of Paint and Allied Coating Products. DHSS (NIOSH) Publication No. 84-115. Cincinnati, OH: NIOSH.

National Institute of Health (Japan). 1996. Personal communication.

National Institutes of Health (NIH). 1976. Recombinant DNA research. Federal Register 41:27902-27905.

—. 1991. Recombinant DNA research actions under the guidelines. Federal Register 56:138.

—. 1996. Guidelines for research involving recombinant DNA molecules. Federal Register 61:10004.

Netzel, JP. 1996. Seal technology: A control for industrial pollution. Presented at the 45th Society of Tribologists and Lubrication Engineers Annual Meetings. 7-10 May, Denver.

Nordlee, JA, SL Taylor, JA Townsend, LA Thomas, and RK Bush. 1996. Identification of a Brazil-nut allergen in transgenic soybeans. New Engl J Med 334 (11):688-692.

Occupational Safety and Health Administration (OSHA). 1984. 50 FR 14468. Washington, DC: OSHA.

—. 1994. CFR 1910.06. Washington, DC:OSHA.

Office of Science and Technology Policy (OSTP). 1986. Coordinated Framework for Biotechnology Regulation. FR 23303. Washington, DC: OSTP.

Openshaw, PJ, WH Alwan, AH Cherrie, and FM Record. 1991. Accidental infection of laboratory worker with recombinant vaccinia virus. Lancet 338.(8764):459.

Parliament of the European Communities. 1987. Treaty Establishing a Single Council and a Single Commission of the European Communities. Official Journal of the European Communities 50(152):2.

Pennington, RL. 1996. VOC and HAP control operations. Separations and Filtration Systems Magazine 2:18-24.

Pratt, D and J May. 1994. Agricultural occupational medicine. In Occupational Medicine, 3rd edition, edited by C Zenz, OB Dickerson, and EP Horvath. St. Louis: Mosby-Year Book, Inc.

Reutsch, C-J and TR Broderick. 1996. New biotechnology legislation in the European Community and Federal Republic of Germany. Biotechnology.

Sattelle, D. 1991. Biotechnology in perspective. Lancet 338:9,28.

Scheff, PA and RA Wadden. 1987. Engineering Design for Control of Workplace Hazards. New York: McGraw-Hill.

Siegell, JH. 1996. Exploring VOC control options. Chemical Engineering 103:92-96.

Society of Tribologists and Lubrication Engineers (STLE). 1994. Guidelines for Meeting Emission Regulations for Rotating Machinery with Mechanical Seals. STLE Special Publication SP-30. Park Ridge, IL: STLE.

Sutton, IS. 1995. Integrated management systems improve plant reliability. Hydrocarbon Processing 74:63-66.

Swiss Interdisciplinary Committee for Biosafety in Research and Technology (SCBS). 1995. Guidelines for Work with Genetically Modified Organisms. Zurich: SCBS.

Thomas, JA and LA Myers (eds.). 1993. Biotechnology and Safety Assessment. New York: Raven Press.

Van Houten, J and DO Flemming. 1993. Comparative analysis of current US and EC biosafety regulations and their impact on the industry. Journal of Industrial Microbiology 11:209-215.

Watrud, LS, SG Metz, and DA Fishoff. 1996. Engineered plants in the environment. In Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, edited by M Levin and E Israeli. Boca Raton, FL: CRC Press.

Woods, DR. 1995. Process Design and Engineering Practice. Englewood Cliffs, NJ: Prentice Hall.